SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andresen Louise C. 1974) ;mspu:(article)"

Sökning: WFRF:(Andresen Louise C. 1974) > Tidskriftsartikel

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andresen, Louise C., 1974, et al. (författare)
  • Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming
  • 2022
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 32:3-4, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
  •  
2.
  • Hovenden, Mark J., et al. (författare)
  • Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2
  • 2019
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 5, s. 167-173
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO 2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO 2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO 2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO 2 response offset each other, constraining the response of ecosystem productivity to rising CO 2 . This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO 2 could be substantially less than anticipated.
  •  
3.
  • Maschler, Julia, et al. (författare)
  • Links across ecological scales: Plant biomass responses to elevated CO2
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:21, s. 6115-6134
  • Tidskriftsartikel (refereegranskat)abstract
    • The degree to which elevated CO2 concentrations (e[CO2]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2]-induced increase n mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.
  •  
4.
  • Andresen, Louise C., 1974, et al. (författare)
  • Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought
  • 2015
  • Ingår i: Soil. - : Copernicus GmbH. - 2199-3971 .- 2199-398X. ; 1:1, s. 341-349
  • Tidskriftsartikel (refereegranskat)abstract
    • Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g−1 day−1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g−1 day−1). Gross FAA mineralization (3.4 ± 0.2 μg N g−1 day−1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6–29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5–1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization was relatively less important in the investigated heathland. This indicates more complex mineralization dynamics in semi-natural ecosystems.
  •  
5.
  • Andresen, Louise C., 1974, et al. (författare)
  • Depolymerization and mineralization – investigating N availability by a novel 15N tracing model
  • 2016
  • Ingår i: SOIL. - : Copernicus GmbH. - 2199-398X. ; 2:3, s. 433-442
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Depolymerization of soil organic matter such as proteins and peptides into monomers (e.g. amino acids) is currently thought to be the rate limiting step for N availability in terrestrial N cycles. The mineralization of free amino acids (FAA), liberated by depolymerization of peptides, is an important fraction of the total N mineralization. Accurate assessment 10 of peptide depolymerization and FAA mineralization rates is important in order to gain a better understanding of the N cycle dynamics. Due to the short time span, soil disturbance and unnatural high FAA content during the first few hours after the labelling with the traditional 15N pool dilution experiments, analytical models might overestimate peptide depolymerization rate. In this paper, we present an extended numerical 15N tracing model Ntrace which incorporates the FAA pool and related N processes in order to 1) provide a more robust and coherent estimation of production and mineralization rates of FAAs; 2) 15 and 2) suggest an amino acid N use efficiency (NUEFAA) for soil microbes, which is a more realistic estimation of soil microbial NUE compared to the NUE estimated by analytical methods. We compare analytical and numerical approaches for two forest soils; suggest improvements of the experimental work for future studies; and conclude that: i) FAA mineralization might be as equally an important rate limiting step for gross N mineralization as peptide depolymerization rate is, because about half of all depolymerized peptide N is consecutively being mineralized; and that ii) FAA mineralization and FAA 20 immobilization rates should be used for assessing NUEFAA.
  •  
6.
  • Andresen, Louise C., 1974, et al. (författare)
  • Moderate nitrogen retention in temperate heath ecosystem after elevated CO2, drought and warming through 7 years
  • 2023
  • Ingår i: European Journal of Soil Science. - 1351-0754 .- 1365-2389. ; 74:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen (N) dynamic is one of the main controlling factors of responses to climate change in N-limited terrestrial ecosystems, which rely on nutrient re-cycling and retention. In this study we investigate the N partitioning in ecosystem compartments of a grassland heath, and the impact of multiple climate change factors on long-term N retention after 15N pulse labelling. The impacts of elevated carbon dioxide (eCO2), warming and drought and the treatments in combination on ecosystem N retention was investigated in a field scale manipulation experiment. A six-year time-course was assessed by pulse-labelling with the stable N isotope 15N and by sampling after 1 day, 1 year and 6 years. After the six years we observed that the total ecosystem retained 42 % of the amended 15N across treatments (recovery of the amended 15N in the pool). The fate of the applied 15N was mainly stabilisation in soil, with 36 % recovery, while the plant compartment and microbial biomass each retained only 1-2 % of the added 15N. This suggests a moderate retention of N, for all treatments, as compared to similar long-term studies of forest ecosystems. A decreased ammonium and vegetation N pool combined with higher 15N retention in the soil at eCO2 treatments suggests that eCO2 promoted processes that immobilize N in soil, while warming counteracted this when combined with eCO2. Drought treatments contrastingly increased the vegetation N pool. We conclude that as the organic soil layer has the main capacity for N storage in a temperate heathland-grassland, it is important for buffering nutrient availability and maintaining a resilient ecosystem. However, the full treatment combination of drought, warming and eCO2 did not differ in 15N recovery from the controls, suggesting unchanged long-term consequences of climate change on retention of pulse added N in this ecosystem.
  •  
7.
  • Andresen, Louise C., 1974, et al. (författare)
  • Nitrogen dynamics after two years of elevated CO2 in phosphorus limited Eucalyptus woodland
  • 2020
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 150, s. 297-312
  • Tidskriftsartikel (refereegranskat)abstract
    • It is uncertain how the predicted further rise of atmospheric carbon dioxide (CO2) concentration will affect plant nutrient availability in the future through indirect effects on the gross rates of nitrogen (N) mineralization (production of ammonium) and depolymerization (production of free amino acids) in soil. The response of soil nutrient availability to increasing atmospheric CO2 is particularly important for nutrient poor ecosystems. Within a FACE (Free-Air Carbon dioxide Enrichment) experiment in a native, nutrient poor Eucalyptus woodland (EucFACE) with low soil organic matter (≤ 3%), our results suggested there was no shortage of N. Despite this, microbial N use efficiency was high (c. 90%). The free amino acid (FAA) pool had a fast turnover time (4 h) compared to that of ammonium (NH4+) which was 11 h. Both NH4-N and FAA-N were important N pools; however, protein depolymerization rate was three times faster than gross N mineralization rates, indicating that organic N is directly important in the internal ecosystem N cycle. Hence, the depolymerization was the major provider of plant available N, while the gross N mineralization rate was the constraining factor for inorganic N. After two years of elevated CO2, no major effects on the pools and rates of the soil N cycle were found in spring (November) or at the end of summer (March). The limited response of N pools or N transformation rates to elevated CO2 suggest that N availability was not the limiting factor behind the lack of plant growth response to elevated CO2, previously observed at the site.
  •  
8.
  • Andresen, Louise C., 1974, et al. (författare)
  • Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model
  • 2016
  • Ingår i: SOIL. - : Copernicus GmbH. - 2199-398X. ; 2, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depoly- merization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15 N tracing model Ntrace , which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of de- polymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation.
  •  
9.
  • Holmstrup, Martin, et al. (författare)
  • Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical ariables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
  •  
10.
  • Jansen-Willems, Anne B., et al. (författare)
  • Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil
  • 2016
  • Ingår i: SOIL. - : Copernicus GmbH. - 2199-3971 .- 2199-398X. ; 2, s. 601-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. Over the last century an increase in mean soil surface temperature has been observed, and it is predicted to increase further in the future. In order to evaluate the legacy effects of increased temperature on both nitrogen (N) transformation rates in the soil and nitrous oxide (N2O) emissions, an incubation experiment and modelling approaches were combined. Based on previous observations that gross N transformations in soils are affected by long-term elevated-temperature treatments we hypothesized that any associated effects on gaseous N emissions (e.g. N2O) can be confirmed by a change in the relative emission rates from various pathways. Soils were taken from a long-term in situ warming experiment on temperate permanent grassland. In this experiment the soil temperature was elevated by 0 (control), 1, 2 or 3 �C (four replicates per treatment) using IR (infrared) lamps over a period of 6 years. The soil was subsequently incubated under common conditions (20 C and 50% humidity) and labelled as NO15 3 NH4 Gly, 15NO3NH4 Gly or NO3NH4 15N-Gly. Soil extractions and N2O emissions were analysed using a 15N tracing model and source-partitioning model. Both total inorganic N (NO3 CNHC 4 ) and NO3 contents were higher in soil subjected to the C2 and C3 �C temperature elevations (pre and post-incubation). Analyses of N transformations using a 15N tracing model showed that, following incubation, gross organic (but not inorganic) N transformation rates decreased in response to the prior soil warming treatment. This was also reflected in reduced N2O emissions associated with organic N oxidation and denitrification. Furthermore, a newly developed source-partitioning model showed the importance of oxidation of organic N as a source of N2O. In conclusion, long-term soil warming can cause a legacy effect which diminishes organic N turnover and the release of N2O from organic N and denitrification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy