SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Angelopoulos E.) srt2:(2015-2019);pers:(Strangeway R. J.)"

Search: WFRF:(Angelopoulos E.) > (2015-2019) > Strangeway R. J.

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Oieroset, M., et al. (author)
  • Reconnection With Magnetic Flux Pileup at the Interface of Converging ts at the Magnetopause
  • 2019
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:4, s. 1937-1946
  • Journal article (peer-reviewed)abstract
    • We report Magnetospheric Multiscale observations of reconnection in a in current sheet at the interface of interlinked flux tubes carried by nverging reconnection jets at Earth's magnetopause. The ion skin pth-scale width of the interface current sheet and the non-frozen-in ns indicate that Magnetospheric Multiscale crossed the reconnection yer near the X-line, through the ion diffusion region. Significant leup of the reconnecting component of the magnetic field in this and ree other events on approach to the interface current sheet was companied by an increase in magnetic shear and decrease in , leading conditions favorable for reconnection at the interface current sheet. e pileup also led to enhanced available magnetic energy per particle d strong electron heating. The observations shed light on the olution and energy release in 3-D systems with multiple reconnection tes. ain Language Summary The Earth and the solar wind magnetic fields terconnect through a process called magnetic reconnection. The newly connected magnetic field lines are strongly bent and accelerate rticles, similar to a rubber band in a slingshot. In this paper we ve used observations from NASA's Magnetospheric MultiScale spacecraft investigate what happens when two of these slingshot-like magnetic eld lines move toward each other and get tangled up. We found that the o bent magnetic field lines tend to orient themselves perpendicular to ch other as they become interlinked and stretched, similar to what bber bands would do. This reorientation allows the interlinked gnetic fields to reconnect again, releasing part of the built-up gnetic energy as strong electron heating. The results are important cause they show how interlinked magnetic fields, which occur in many lar and astrophysics contexts, reconnect and produce enhanced electron ating, something that was not understood before.
  •  
2.
  • Artemyev, A. V., et al. (author)
  • Field-Aligned Currents Originating From the Magnetic Reconnection Region : Conjugate MMS-ARTEMIS Observations
  • 2018
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:12, s. 5836-5844
  • Journal article (peer-reviewed)abstract
    • Near-Earth magnetic reconnection reconfigures the magnetotail and produces strong plasma flows that transport plasma sheet particles and electromagnetic energy to the inner magnetosphere. An essential element of such a reconfiguration is strong, transient field-aligned currents. These currents, believed to be generated within the plasma sheet and closed at the ionosphere, are responsible for magnetosphere-ionosphere coupling during substorms. We use conjugate measurements from Magnetospheric Multiscale (MMS) at the plasma sheet boundary (around x approximate to- 10R(E)) and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) at the equator (around x approximate to- 60R(E)) to explore the potential generation region of these currents. We find a clear correlation between the field-aligned current intensity measured by MMS and the tailward plasma sheet flows measured by ARTEMIS. To better understand the origin of this correlation, we compare spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection. The comparison reveals that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between MMS (near-Earth) and ARTEMIS (at lunar distance). A weak correlation between the field-aligned current intensity at MMS and earthward flow magnitudes at ARTEMIS suggests that distant magnetotail reconnection does not significantly contribute to the generation of the observed near-Earth currents. Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. Plain Language Summary Field-aligned currents connect the Earth magnetotail and ionosphere, proving energy and information transport from the region where main energy release process, magnetic reconnection, occurs to the region where the collisional energy dissipation takes place. Therefore, investigation and modeling of the field-aligned current generation is important problem of the magnetosphere plasma physics. However, field-aligned current investigation requires simultaneous observations of reconnection signatures in the magnetotail and at high latitudes. Simultaneous and conjugate operation of two multispacecraft missions, Magnetospheric Multiscale and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun, for the first time provide an opportunity for such investigation. Combining spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection, we demonstrate that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between near-Earth (Magnetospheric Multiscale location) and lunar distant tail (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun location). Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view