SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anthony Katey Walter) "

Sökning: WFRF:(Anthony Katey Walter)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuhn, McKenzie A., et al. (författare)
  • BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5151-5189
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from the boreal and arctic region are globally significant and highly sensitive to climate change. There is currently a wide range in estimates of high-latitude annual CH4 fluxes, where estimates based on land cover inventories and empirical CH4 flux data or process models (bottom-up approaches) generally are greater than atmospheric inversions (top-down approaches). A limitation of bottom-up approaches has been the lack of harmonization between inventories of site-level CH4 flux data and the land cover classes present in high-latitude spatial datasets. Here we present a comprehensive dataset of small-scale, surface CH4 flux data from 540 terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakes and ponds), compiled from 189 studies. The Boreal-Arctic Wetland and Lake Methane Dataset (BAWLD-CH4) was constructed in parallel with a compatible land cover dataset, sharing the same land cover classes to enable refined bottom-up assessments. BAWLD-CH4 includes information on site-level CH4 fluxes but also on study design (measurement method, timing, and frequency) and site characteristics (vegetation, climate, hydrology, soil, and sediment types, permafrost conditions, lake size and depth, and our determination of land cover class). The different land cover classes had distinct CH4 fluxes, resulting from definitions that were either based on or co-varied with key environmental controls. Fluxes of CH4 from terrestrial ecosystems were primarily influenced by water table position, soil temperature, and vegetation composition, while CH4 fluxes from aquatic ecosystems were primarily influenced by water temperature, lake size, and lake genesis. Models could explain more of the between-site variability in CH4 fluxes for terrestrial than aquatic ecosystems, likely due to both less precise assessments of lake CH4 fluxes and fewer consistently reported lake site characteristics. Analysis of BAWLD-CH4 identified both land cover classes and regions within the boreal and arctic domain, where future studies should be focused, alongside methodological approaches. Overall, BAWLD-CH4 provides a comprehensive dataset of CH4 emissions from high-latitude ecosystems that are useful for identifying research opportunities, for comparison against new field data, and model parameterization or validation.
  •  
2.
  • Douglas, Peter M. J., et al. (författare)
  • Clumped Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of long-stored carbon from thawed permafrost could fuel increased methanogenesis in northern lakes, but it remains unclear whether old carbon substrates released from permafrost are metabolized as rapidly by methanogenic microbial communities as recently produced organic carbon. Here, we apply methane (CH4) clumped isotope (Delta(18)) and C-14 measurements to test whether rates of methanogenesis are related to carbon substrate age. Results from culture experiments indicate that Delta(18) values are negatively correlated with CH4 production rate. Measurements of ebullition samples from thermokarst lakes in Alaska and glacial lakes in Sweden indicate strong negative correlations between CH4 Delta(18) and the fraction modern carbon. These correlations imply that CH4 derived from older carbon substrates is produced relatively slowly. Relative rates of methanogenesis, as inferred from Delta(18) values, are not positively correlated with CH4 flux estimates, highlighting the likely importance of environmental variables other than CH4 production rates in controlling ebullition fluxes. Plain Language Summary There is concern that carbon from thawed permafrost will be emitted to the atmosphere as methane (CH4). It is currently uncertain whether old organic carbon from thawed permafrost can be converted to CH4 as rapidly as organic carbon recently fixed by primary producers. We address this question by combining radiocarbon and clumped isotope measurements of CH4 from lakes in permafrost landscapes. Radiocarbon (C-14) measurements indicate the age of CH4 carbon sources. We present data from culture experiments that support the hypothesis that clumped isotope values are dependent on microbial CH4 production rate. In lake bubble samples, we observe a strong correlation between these two measurements, which implies that CH4 formed from older carbon is produced relatively slowly. We also find that higher rates of CH4 production, as inferred from clumped isotopes, are not linked to higher rates of CH4 emissions, implying that variables other than CH4 production rate strongly influence emission rates.
  •  
3.
  • ODonnell, Michael, et al. (författare)
  • Registered Replication Report: Dijksterhuis and van Knippenberg (1998)
  • 2018
  • Ingår i: Perspectives on Psychological Science. - : SAGE PUBLICATIONS LTD. - 1745-6916 .- 1745-6924. ; 13:2, s. 268-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Dijksterhuis and van Knippenberg (1998) reported that participants primed with a category associated with intelligence (professor) subsequently performed 13% better on a trivia test than participants primed with a category associated with a lack of intelligence (soccer hooligans). In two unpublished replications of this study designed to verify the appropriate testing procedures, Dijksterhuis, van Knippenberg, and Holland observed a smaller difference between conditions (2%-3%) as well as a gender difference: Men showed the effect (9.3% and 7.6%), but women did not (0.3% and -0.3%). The procedure used in those replications served as the basis for this multilab Registered Replication Report. A total of 40 laboratories collected data for this project, and 23 of these laboratories met all inclusion criteria. Here we report the meta-analytic results for those 23 direct replications (total N = 4,493), which tested whether performance on a 30-item general-knowledge trivia task differed between these two priming conditions (results of supplementary analyses of the data from all 40 labs, N = 6,454, are also reported). We observed no overall difference in trivia performance between participants primed with the professor category and those primed with the hooligan category (0.14%) and no moderation by gender.
  •  
4.
  • Prowse, Terry, et al. (författare)
  • Effects of Changes in Arctic Lake and River Ice
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:Suppl 1, s. 63-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic changes to freshwater ice in the Arctic are projected to produce a variety of effects on hydrologic, ecological, and socio-economic systems. Key hydrologic impacts include changes to low flows, lake evaporation regimes and water levels, and river-ice break-up severity and timing. The latter are of particular concern because of their effect on river geomorphology, vegetation, sediment and nutrient fluxes, and sustainment of riparian aquatic habitats. Changes in ice phenology will affect a wide range of related biological aspects of seasonality. Some changes are likely to be gradual, but others could be more abrupt as systems cross critical ecological thresholds. Transportation and hydroelectric production are two of the socio-economic sectors most vulnerable to change in freshwater-ice regimes. Ice roads will require expensive on-land replacements while hydroelectric operations will both benefit and be challenged. The ability to undertake some traditional harvesting methods will also be affected.
  •  
5.
  • Strauss, Jens, et al. (författare)
  • Circum-Arctic Map of the Yedoma Permafrost Domain
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-rich permafrost in the circum-Arctic and sub-Arctic (hereafter pan-Arctic), such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. This mobilization of elements has local and global implications: increased thaw in thermokarst or thermal erosion settings enhances greenhouse gas fluxes from permafrost regions. In addition, this ice-rich ground is of special concern for infrastructure stability as the terrain surface settles along with thawing. Finally, understanding the distribution of the Yedoma domain area provides a window into the Pleistocene past and allows reconstruction of Ice Age environmental conditions and past mammoth-steppe landscapes. Therefore, a detailed assessment of the current pan-Arctic Yedoma coverage is of importance to estimate its potential contribution to permafrost-climate feedbacks, assess infrastructure vulnerabilities, and understand past environmental and permafrost dynamics. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km2, whereas Yedoma deposits are found within 480,000 km2 of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates.
  •  
6.
  • Turetsky, Merritt R., et al. (författare)
  • Carbon release through abrupt permafrost thaw
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13:2, s. 138-
  • Tidskriftsartikel (refereegranskat)abstract
    • The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km(2) of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km(2) permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.
  •  
7.
  • Wik, Martin, et al. (författare)
  • Climate-sensitive northern lakes and ponds are critical components of methane release
  • 2016
  • Ingår i: Nature Geoscience. - : NATURE PUBLISHING GROUP. - 1752-0894 .- 1752-0908. ; 9:2, s. 99-
  • Forskningsöversikt (refereegranskat)abstract
    • Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of similar to 50 degrees N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr(-1) (12.4 Tg CH4-C yr(-1)). This estimate - from lakes and ponds alone - is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20-54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.
  •  
8.
  • Wik, Martin, 1982-, et al. (författare)
  • Climate-sensitive northern lakes and ponds are critical components of methane release
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9, s. 99-105
  • Forskningsöversikt (refereegranskat)abstract
    • Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of ~50° N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr−1 (12.4 Tg CH4-C yr−1). This estimate — from lakes and ponds alone — is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20–54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy