SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antoni Gunnar) ;pers:(Lundqvist Hans)"

Sökning: WFRF:(Antoni Gunnar) > Lundqvist Hans

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beshara, Soheir, et al. (författare)
  • Kinetic analysis of 52Fe-labelled iron(III) hydroxide-sucrose complex following bolus administration using positron emission tomography
  • 1999
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 104:2, s. 288-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic analysis of a single intravenous injection of 100 mg iron(III) hydroxide-sucrose complex (Venofer) mixed with 52Fe(III) hydroxide-sucrose as a tracer was followed for 3-6 h in four generally anaesthetized, artificially ventilated minipigs using positron emission tomography (PET). The amount of injected radioactivity ranged from 30 to 200 MBq. Blood radioactivity, measured by PET in the left ventricle of the heart, displayed a fast clearance phase followed by a slow one. In the liver and bone marrow a fast radioactivity uptake occurred during the first 30 min, followed by a slower steady increase. In the liver a slight decrease in radioactivity uptake was noted by the end of the study. A kinetic analysis using a three-compartment (namely blood pool, reversible and irreversible tissue pools) model showed a fairly high distribution volume in the liver as compared with the bone marrow. In conclusion, the pharmacokinetics of the injected complex was clearly visualized with the PET technique. The organs of particular interest, namely the heart (for blood kinetics), liver and bone marrow could all be viewed by a single setting of a PET tomograph with an axial field of view of 10 cm. The half-life (T1/2) of 52Fe (8.3 h) enables a detailed kinetic study up to 24 h. A novel method was introduced to verify the actual 52Fe contribution to the PET images by removing the interfering radioactive daughter 52mMn positron emissions. The kinetic data fitted the three-compartment model, from which rate constants could be obtained for iron transfer from the blood to a pool of iron in bone marrow or liver to which it was bound during the study period. In addition, there was a reversible tissue pool of iron, which in the liver slowly equilibrated with the blood, to give a net efflux from the liver some hours after i.v. administration. The liver uptake showed a relatively long distribution phase, whereas the injected iron was immediately incorporated into the bone marrow. Various transport mechanisms seem to be involved in the handling of the injected iron complex.
  •  
2.
  • Beshara, Soheir, et al. (författare)
  • Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography
  • 2003
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 120:5, s. 853-859
  • Tidskriftsartikel (refereegranskat)abstract
    • Parenteral iron-polysaccharide complexes are increasingly applied. The pharmacokinetics of iron sucrose have been assessed by our group using positron emission tomography (PET). A single intravenous injection of 100 mg iron as iron (III) hydroxide-polymaltose complex, labelled with a tracer in the form of 52Fe/59Fe, was similarly assessed in six patients using PET for about 8 h. Red cell utilization was followed for 4 weeks. Iron polymaltose was similarly distributed to the liver, spleen and bone marrow. However, a larger proportion of this complex was rapidly distributed to the bone marrow. The shorter equilibration phase for the liver, about 25 min, indicates the minimal role of the liver for direct distribution. Splenic uptake also reflected the reticuloendothelial handling of this complex. Red cell utilization ranged from 61% to 99%. Despite the relatively higher uptake by the bone marrow, there was no saturation of marrow transport systems at this dose level. In conclusion, high red cell utilization of iron polymaltose occurred in anaemic patients. The major portion of the injected dose was rapidly distributed to the bone marrow. In addition, the reticuloendothelial uptake of this complex may reflect the safety of polysaccharide complexes. Non-saturation of transport systems to the bone marrow indicated the presence of a large interstitial transport pool, which might possibly be transferrin.
  •  
3.
  • Beshara, Soheir, et al. (författare)
  • Pharmacokinetics and red cell utilization of iron(III) hydroxide- sucrose complex in anaemic patients: a study using positron emission tomography
  • 1999
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 104:2, s. 296-302
  • Tidskriftsartikel (refereegranskat)abstract
    • The pharmacokinetics of a single intravenous injection of 100 mg iron hydroxide-sucrose complex labelled with a tracer in the form of 52Fe/59Fe was followed in six anaemic patients for a period ranging from 6 to 8 3 h using positron emission tomography (PET). Red cell utilization of the labelled iron was followed for 4 weeks. PET data showed radioactive uptake by the liver, spleen and bone marrow. The uptake by the macrophage-rich spleen demonstrated the reticuloendothelial uptake of this iron preparation, with subsequent effective release of that iron for marrow utilization. Red cell utilization, followed for 4 weeks, ranged from 59% to 97%. The bone marrow influx rate constant was independent of blood iron concentration, indicating non-saturation of the transport system in bone marrow. This implied that higher doses of the iron complex can probably be used in the same setting. A higher influx rate into the marrow compared with the liver seemed to be consistent with higher red cell utilization. This would indicate that early distribution of the injected iron complex may predict the long-term utilization.
  •  
4.
  • Lundqvist, Hans, et al. (författare)
  • Genotoxic hazard of radiopharmaceuticals in humans : chemical and radiation aspects coupled to microdosing
  • 2007
  • Ingår i: European Journal of Clinical Pharmacology. - : Springer Science and Business Media LLC. - 0031-6970 .- 1432-1041. ; 63:7, s. 641-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction  To obtain the pharmacokinetic properties of drug candidates at an early stage of the development process, a microdosing (phase 0) concept to radiolabel drug candidates and administer them at subtoxic mass to a few volunteers has been suggested. Radiopharmaceuticals are special in the sense that the chemical carrier might be genotoxic, whereas it is well established that ionizing radiation coupled to the molecule is genotoxic, and that the mechanism that causes cancer is similar to certain genotoxic chemicals. Regulatory perspectives of the levels of toxicity  An analysis shows that, e.g., positron emission tomography (PET) pharmaceuticals carry a mass less than what is regarded as an acceptable level of a genotoxic impurity. It has also been shown that the estimated genotoxicity hazard of the radioactivity is 10–100 times higher than that of the administered chemicals. Conclusion  As radiation doses at this level are accepted in clinical trials, the conclusion is that the regulatory demands on radiopharmaceuticals produced at high specific radioactivity should be reconsidered in order to facilitate the use of the microdosing concept for drug development.
  •  
5.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy