SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antoniou Anna) ;hsvcat:1"

Sökning: WFRF:(Antoniou Anna) > Naturvetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maxwell, Christopher A., et al. (författare)
  • Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer
  • 2011
  • Ingår i: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
  •  
2.
  • Donis, Daphne, et al. (författare)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
3.
  • Mantzouki, Evanthia, et al. (författare)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • Ingår i: Toxins. - : MDPI. - 2072-6651. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy