SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arbiser Jack) ;pers:(Arbiser Jack L.)"

Sökning: WFRF:(Arbiser Jack) > Arbiser Jack L.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arbiser, Jack L., et al. (författare)
  • Functional tyrosine kinase inhibitor profiling : a generally applicable method points to a novel role of platelet-derived growth factor receptor-beta in tuberous sclerosis
  • 2002
  • Ingår i: American Journal of Pathology. - 0002-9440 .- 1525-2191. ; 161:3, s. 781-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumors often exhibit activation of specific tyrosine kinases, which may allow targeting of therapy through inhibition of tyrosine kinase signaling. This strategy has been used successfully in the development of STI571 (gleevec), an inhibitor of bcr-abl tyrosine kinase that has been used successfully in the treatment of chronic myelogenous leukemia. STI571 also shows activity against c-kit and platelet-derived growth factor receptor-beta (PDGFRbeta) tyrosine kinase signaling, thus potentially expanding the number of tumors that may respond to it. We describe a simple and rapid method to assess functional activity of tyrosine kinase signaling that is broadly applicable to tumor types. As proof of principle, we have applied it to cells that serve as models of the autosomal-dominant tumor syndrome tuberous sclerosis (TS). We found that TS model cells derived from tuberin heterozygous mice and from a human renal angiomyolipoma are highly sensitive to PDGFR antagonists and that these cells express PDGFRbeta. Given that PDGFRbeta signaling is inhibited by STI571, we found that SV7tert human angiomyolipoma cells are sensitive to STI571. Thus, we describe a novel but simple method of determining the functional tyrosine kinase profile of a neoplastic cell and our results suggest that STI571 might be useful in the treatment of neoplasms commonly seen in patients with TS.
  •  
2.
  • Cao, Ziquan, 1982- (författare)
  • VEGF-mediated vascular functions in health and disease
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Angiogenesis is essential for physiological processes including embryonic development, tissue regeneration, and reproduction. Under various pathological conditions the same angiogenic process contribute to the onset, development, and progression of many human diseases including cancer, diabetic complications, ocular disease, chronic inflammation and cardiovascular disease. Vascular endothelial growth factor (VEGF) is a key angiogenic factor for physiological and pathological angiogenesis. In addition to its strong angiogenic activity, VEGF also potently induces vascular permeability, often causing tissue edema in various pathological tissues. VEGF transduces its vascular signal through two tyrosine kinase receptors-VEGFR1 and VEGFR2, the latter being a functional receptor that mediates both angiogenic and vascular permeability effects. To study physiological and pathological functions of VEGF, we developed novel zebrafish disease models that permit us to study hypoxia-induced retinopathy and cancer metastasis processes. We have also administered anti-VEGF and anti-VEGFR specific antibodies to healthy mice to study the homeostatic role of VEGF in the maintenance of vascular integrity and its functions in various tissues and organs.Finally, using a zebrafish model, we evaluated if VEGF expression is regulated by circadian clock genes. In paper I, we developed protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1:EGFP zebrafish were placed in hypoxic water for 3-10 days with retinal neovascularization being analyzed using confocal microscopy. This model provides a unique opportunity to kinetically study the development of retinopathy in adult animals using non-invasive protocols and to assess the therapeutic efficacy of orally administered anti-angiogenic drugs. In paper II, we developed a zebrafish metastasis model to dissect the complex events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells were implanted into the perivitelline cavity of 48-hour-old zebrafish embryos, which were subsequently placed in hypoxic water for 3 days. Tumor cell invasion, metastasis and pathological angiogenesis were analyzed using fluorescent microscopy in the living fish. The average experimental time for this model is 7 days. Our protocol offers an opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis. In paper III, we show that systemic delivery of an anti-VEGF or an anti-VEGF receptor (VEGFR)-2 neutralizing antibody cause global vascular regression in mice. Among all examined tissues, the vasculature in endocrine glands, intestinal villi, and the uterus are most affected in response to VEGF or VEGFR-2 blockades. Pro-longed anti-VEGF treatment resulted in a significant decrease in the circulating levels of the predominant thyroid hormone, free thyroxine, but not the minimal isoform of triiodothyronine, suggesting that chronic anti-VEGF treatment impairs thyroid function. These findings provide structural and functional bases of anti-VEGF-specific druginduced side effects in relation to vascular changes in healthy tissues. In paper IV, we show that disruption of the circadian clock by constant exposure to light coupled with genetic manipulation of key genes in the zebrafish led to impaired developmental angiogenesis. A bmal1-specific morpholino inhibited developmental angiogenesis in zebrafish embryos without causing obvious nonvascular phenotypes. Conversely, a period2 morpholino accelerated angiogenic vessel growth, suggesting that Bmal1 and Period2 display opposing angiogenic effects. These results offer mechanistic insights into the role of the circadian clock in regulation of developmental angiogenesis, and our findings may be reasonably extended to other types of physiological or pathological angiogenesis. Overall, the results in this thesis provide further insight to angiogenic mechanistic properties in tissues and suggest possible novel therapeutic targets for the treatment of various angiogenesis-dependent diseases.
  •  
3.
  • Reis, Katarina, et al. (författare)
  • Inhibitors of cytoskeletal dynamics in malignant mesothelioma.
  • 2020
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 11:50, s. 4637-4647
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant mesotheliomas (MMs) are highly aggressive mesenchymal tumors that originate from mesothelial cells lining serosal cavities; i.e., the pleura, peritoneum, and pericardium. Classically, there is a well-established link between asbestos exposure, oxidative stress, release of reactive oxygen species, and chronic inflammatory mediators that leads to progression of MMs. MMs have an intermediate phenotype, with co-expression of mesenchymal and epithelial markers and dysregulated communication between the mesothelium and the microenvironment. We have previously shown that the organization and function of key cytoskeletal components can distinguish highly invasive cell lines from those more indolent. Here, we used these tools to study three different types of small-molecule inhibitors, where their common feature is their influence on production of reactive oxygen species. One of these, imipramine blue, was particularly effective in counteracting some key malignant properties of highly invasive MM cells. This opens a new possibility for targeted inhibition of MMs based on well-established molecular mechanisms.
  •  
4.
  • Rennel, Emma, et al. (författare)
  • Regulation of endothelial cell differentiation and transformation by H-Ras
  • 2003
  • Ingår i: Experimental Cell Research. - 0014-4827 .- 1090-2422. ; 291:1, s. 189-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis is regulated by growth factors which activate tyrosine kinase receptors leading to the activation of a number of intracellular signaling pathways. The specific function of H-Ras during FGF-2 stimulated endothelial cell differentiation, defined as invasive growth and formation of branching networks in fibrin gels, was investigated by using conditionally immortalized endothelial cell lines induced to express H-Ras mutants. Expression of inhibitory N17Ras did not impair differentiation in response to FGF-2 and TNF-alpha. The farnesyltransferase inhibitor FTI-277 inhibited farnesylation of Ras but did not inhibit differentiation of human microvascular endothelial cells or mouse brain endothelial cells. In contrast, activated V12Ras inhibited endothelial cell differentiation and cells displayed a transformed phenotype with an increased rate of proliferation and loss of contact inhibited growth. Furthermore, V12Ras expressing endothelial cells grew as solid tumors when injected subcutaneously into mice. Our data suggest that, in endothelial cells, H-Ras activity is not required for differentiation. However, this activity must be tightly regulated as aberrant activity can disturb the ability of endothelial cells to undergo differentiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy