SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ardalan Ali) ;pers:(Ardalan Maryam 1979)"

Sökning: WFRF:(Ardalan Ali) > Ardalan Maryam 1979

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ardalan, Maryam, 1979, et al. (författare)
  • Rapid effects of S-ketamine on the morphology of hippocampal astrocytes and BDNF serum levels in a sex-dependent manner
  • 2020
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X .- 1873-7862. ; 32, s. 94-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of major depressive disorder (MDD) is higher in women than men. Importantly, a differential behavioral response by sex to the antidepressant response to ketamine in rodents has been reported. Mechanistically, male depressed-like animals showed an increased spine density after ketamine treatment via restoration of synaptic protein levels while those proteins were not altered in female rats. In addition, preclinical studies indicate that the impairment of astrocytic plasticity is one of the contributing mechanisms in the pathophysiology of MDD. Accordingly, in this study, we determined the effect of sex on the rapid morphological alteration of hippocampal astrocytes and the serum level of BDNF one hour after S-ketamine injection. A single intraperitoneal dose of S-ketamine (15 mg/kg) or saline was injected to the male and female Flinders Sensitive Line (FSL) rats, a genetic animal model of depression and their brains were perfused one hour after treatment. The size of the GFAP positive astrocytes in the hippocampal subregions was measured. The volume of different hippocampal subregions was assessed using the Cavalieri estimator. Moreover, serum levels of BDNF were measured with enzyme-linked immunosorbent assay (ELISA) kits. The volume of hippocampal subregions significantly increased one hour after S-ketamine in both male and female FSL animals. However, a substantial alteration in the morphology of the hippocampal astrocytes was observed only in the female rats. Additionally, significantly increased serum BDNF levels in the female depressed rats were observed one hour after S-ketamine treatment. Our results indicate that the rapid effects of S-ketamine on the morphology of the hippocampal astrocytes and the serum level of BDNF are sex-dependent.
  •  
2.
  • Ardalan, Maryam, 1979, et al. (författare)
  • Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation
  • 2022
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 179:17, s. 4400-4422
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. Experimental Approach: C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1mg·kg−1) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. Key Results: Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. Conclusion and Implications: The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
  •  
3.
  • Sävman, Karin, 1960, et al. (författare)
  • Galectin-3 Modulates Microglia Inflammation in vitro but Not Neonatal Brain Injury in vivo under Inflammatory Conditions
  • 2021
  • Ingår i: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 43:5, s. 296-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia may contribute to injury but may also have neuroprotective properties. Galectin-3 has immunomodulatory properties that may affect the microglia phenotype and subsequent development of injury. Galectin-3 contributes to experimental hypoxic-ischemic (HI) injury in the neonatal brain, but it is unclear if galectin-3 has similar effects on infectious and sterile inflammation. Thus, we investigated the effect of galectin-3 on microglia in vitro under normal as well as infectious and sterile inflammatory conditions, and the effect of galectin-3 on neonatal brain injury following an infectious challenge in vivo. Conditions mimicking infectious or sterile inflammation were evaluated in primary microglia cell cultures from newborn mice, using LPS (10 ng/mL) and TNF-alpha (100 ng/mL). The response to galectin-3 was tested alone or together with LPS or TNF-alpha. Supernatants were collected 24 h after treatment and analyzed for 23 inflammatory mediators including pro- and anti-inflammatory cytokines and chemokines using multiplex protein analysis, as well as ELISA for MCP-1 and insulin-like growth factor (IGF)-1. Phosphorylation of proteins (AKT, ERK1/2, I kappa B-alpha, JNK, and p38) was determined in microglia cells. Neonatal brain injury was induced by a combination of LPS and HI (LPS + HI) in postnatal day 9 transgenic mice lacking functional galectin-3 and wild-type controls. LPS and TNF-alpha induced pro-inflammatory (9/11 vs. 9/10) and anti-inflammatory (6/6 vs. 2/6) cytokines, as well as chemokines (6/6 vs. 4/6) in a similar manner, except generally lower amplitude of the TNF-alpha-induced response. Galectin-3 alone had no effect on any of the proteins analyzed. Galectin-3 reduced the LPS- and TNF-alpha-induced microglia response for cytokines, chemokines, and phosphorylation of I kappa B-alpha. LPS decreased baseline IGF-1 levels, and the levels were restored by galectin-3. Brain injury or microglia response after LPS + HI was not affected by galectin-3 deficiency. Galectin-3 has no independent effect on microglia but modulates inflammatory activation in vitro. The effect was similar under infectious and sterile inflammatory conditions, suggesting that galectin-3 regulates inflammation not just by binding to LPS or toll-like receptor-4. Galectin-3 restores IGF-1 levels reduced by LPS-induced inflammation, suggesting a potential protective effect on infectious injury. However, galectin-3 deficiency did not affect microglia activation and was not beneficial in an injury model encompassing an infectious challenge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy