SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ardlie Kristin) "

Sökning: WFRF:(Ardlie Kristin)

  • Resultat 1-10 av 23
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - 1932-6203. ; 7:1, s. e29202
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P&lt;0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P&lt;0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P&lt;2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P&lt;0.05) and reached more nominal levels of significance (P&lt;2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.</p>
2.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PLoS ONE. - San Francisco : Public Library of Science. - 1932-6203 .- 1932-6203. ; 7:1, s. e29202
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P&lt;0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P&lt;0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P&lt;2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P&lt;0.05) and reached more nominal levels of significance (P&lt;2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.</p>
3.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 75-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
  •  
4.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P &lt; 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.</p>
  •  
5.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:7, s. 155-579
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
6.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - 1476-4687. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
7.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 467:7317, s. 832-838
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P&lt;0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.</p>
  •  
8.
  • Campbell, Catarina D., et al. (författare)
  • Association studies of BMI and type 2 diabetes in the neuropeptide y pathway - A possible role for NPY2R as a candidate gene for type 2 diabetes in men
  • 2007
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 56:5, s. 1460-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replica- tion sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
9.
  • Dupuis, Josee, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 32-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
  •  
10.
  • Dupuis, Josée, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:2, s. 105-116
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
  • [1]23Nästa
Åtkomst
fritt online (9)
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt (1)
Författare/redaktör
Groop, Leif, (20)
Tuomi, Tiinamaija, (16)
Altshuler, David (16)
McCarthy, Mark I (15)
Hattersley, Andrew T (15)
Voight, Benjamin F. (15)
visa fler...
Frayling, Timothy M. (15)
Saxena, Richa (15)
Lyssenko, Valeriya, (14)
Weedon, Michael N. (14)
Wareham, Nicholas J (13)
Hu, Frank B., (13)
Boehnke, Michael (13)
Barroso, Inês (13)
Illig, Thomas (13)
Palmer, Colin N. A. (13)
Isomaa, Bo, (12)
Mohlke, Karen L (12)
Qi, Lu (12)
Jackson, Anne U. (12)
Thorleifsson, Gudmar (12)
Prokopenko, Inga (12)
Steinthorsdottir, Va ... (12)
Stringham, Heather M ... (12)
Bergman, Richard N. (12)
Collins, Francis S. (12)
Tuomilehto, Jaakko (12)
Thorsteinsdottir, Un ... (12)
Stefansson, Kari (12)
Morris, Andrew D (12)
Zeggini, Eleftheria (12)
Kuusisto, Johanna, (11)
Laakso, Markku, (11)
Grarup, Niels, (11)
Hansen, Torben, (11)
Langenberg, Claudia (11)
Wichmann, H. Erich (11)
Aulchenko, Yurii S. (11)
Perry, John R. B. (11)
Boerwinkle, Eric (11)
Fox, Caroline S. (11)
Wilson, James F. (11)
Lindgren, Cecilia M. (11)
Daly, Mark J. (11)
Grallert, Harald (11)
Pedersen, Oluf, (10)
Abecasis, Goncalo R. (10)
Hirschhorn, Joel N. (10)
Bonnycastle, Lori L. (10)
Narisu, Narisu (10)
visa färre...
Lärosäte
Lunds universitet (14)
Uppsala universitet (7)
Karolinska Institutet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy