SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arner Anders) ;lar1:(uu)"

Sökning: WFRF:(Arner Anders) > Uppsala universitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Daniel P., et al. (författare)
  • Omentectomy in addition to gastric bypass surgery and influence on insulin sensitivity : A randomized double blind controlled trial
  • 2014
  • Ingår i: Clinical Nutrition. - : Elsevier BV. - 0261-5614 .- 1532-1983. ; 33:6, s. 991-996
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Accumulation of visceral adipose tissue is associated with insulin resistance and cardio-vascular disease. The aim of this study was to elucidate whether removal of a large amount of visceral fat by omentectomy in conjunction with Roux en-Y gastric bypass operation (RYGB) results in enhanced improvement of insulin sensitivity compared to gastric bypass surgery alone. Methods: Eighty-one obese women scheduled for RYGB were included in the study. They were randomized to RYGB or RYGB in conjunction with omentectomy. Insulin sensitivity was measured by hyperinsulinemic euglycemic clamp before operation and sixty-two women were also reexamined 2 years post-operatively. The primary outcome measure was insulin sensitivity and secondary outcome measures included cardio-metabolic risk factors. Results: Two-year weight loss was profound but unaffected by omentectomy. Before intervention, there were no clinical or metabolic differences between the two groups. The difference in primary outcome measure, insulin sensitivity, was not significant between the non-omentectomy (6.7 +/- 1.6 mg/kg body weight/minute) and omentectomy groups (6.6 +/- 1.5 mg/kg body weight/minute) after 2 years. Nor did any of the cardio-metabolic risk factors that were secondary outcome measures differ significantly. Conclusion: Addition of omentectomy to gastric bypass operation does not give an incremental effect on long term insulin sensitivity or cardio-metabolic risk factors. The clinical usefulness of omentectomy in addition to gastric bypass operation is highly questionable.
  •  
2.
  • Bamberg, Krister, et al. (författare)
  • Electrolyte handling in the isolated perfused rat kidney : demonstration of vasopressin V2-receptor-dependent calcium reabsorption
  • 2020
  • Ingår i: Upsala Journal of Medical Sciences. - : TAYLOR & FRANCIS LTD. - 0300-9734 .- 2000-1967. ; 125:4, s. 274-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The most profound effect of vasopressin on the kidney is to increase water reabsorption through V-2-receptor (V2R) stimulation, but there are also data suggesting effects on calcium transport. To address this issue, we have established an isolated perfused kidney model with accurate pressure control, to directly study the effects of V2R stimulation on kidney function, isolated from systemic effects. Methods The role of V2R in renal calcium handling was studied in isolated rat kidneys using a new pressure control system that uses a calibration curve to compensate for the internal pressure drop up to the tip of the perfusion cannula. Results Kidneys subjected to V2R stimulation using desmopressin (DDAVP) displayed stable osmolality and calcium reabsorption throughout the experiment, whereas kidneys not administered DDAVP exhibited a simultaneous fall in urine osmolality and calcium reabsorption. Epithelial sodium channel (ENaC) inhibition using amiloride resulted in a marked increase in potassium reabsorption along with decreased sodium reabsorption. Conclusions A stable isolated perfused kidney model with computer-controlled pressure regulation was developed, which retained key physiological functions. The preparation responds to pharmacological inhibition of ENaC channels and activation of V2R. Using the model, the dynamic effects of V2R stimulation on calcium handling and urine osmolality could be visualised. The study thereby provides evidence for a stimulatory role of V2R in renal calcium reabsorption.
  •  
3.
  • Jiao, Hong, et al. (författare)
  • Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene for Human Obesity
  • 2011
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 96:6, s. E962-E966
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Previous studies suggest a role for fibroblast growth factor receptor 1 (FGFR1) in the regulation of energy balance. Objective: Our objective was to investigate whether FGFR1 is an obesity gene by genetic association and functional studies. Design: The study was designed to genotype common FGFR1 single-nucleotide polymorphisms (SNP) in large cohorts, confirm significant results in additional cohorts, and measure FGFR1 expression in human adipose tissue and in rodent hypothalamus. Setting: General community and referral centers for specialized care was the setting for the study. Participants: We genotyped FGFR1 SNP in 2438 obese and 2115 lean adults and 985 obese and 532 population-based children. Results were confirmed in 928 obese and 2738 population-based adults and 487 obese and 441 lean children. Abdominal sc adipose tissue was investigated in 202 subjects. We also investigated diet-induced, obese fasting, and fed rats. Main Outcome Measures: We analyzed the association between FGFR1 SNP and obesity. In secondary analyses, we related adipose FGFR1 expression to genotype, obesity, and degree of fat cell differentiation and related hypothalamic FGFR1 to energy balance. Results: FGFR1 rs7012413*T was nominally associated with obesity in all four cohorts; metaanalysis odds ratio = 1.17 (95% confidence interval = 1.10-1.25), and P = 1.8 x 10(-6), which was P = 7.0 x 10(-8) in the recessive model. rs7012413*T was associated with FGFR1 expression in adipose tissue (P < 0.0001). In this organ, but not in skeletal muscle, FGFR1 mRNA (P < 0.0001) and protein (P < 0.05) were increased in obesity. In rats, hypothalamic expression of FGFR1 declined after fasting (P < ]0.001) and increased after diet-induced obesity (P < 0.05). Conclusions: FGFR1 is a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite.
  •  
4.
  • Jiao, Hong, et al. (författare)
  • Genome wide association study identifies KCNMA1 contributing to human obesity
  • 2011
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 4, s. 51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity. Methods: We performed a GWA analysis in 164 morbidly obese subjects (BMI: body mass index > 40 kg/m(2)) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal P< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for 14 adults. Results: Potassium channel, calcium activated, large conductance, subfamily M, alpha member (KCNMA1) rs2116830*G and BDNF rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for KCNMA1 rs2116830*G with P = 2.82 x 10(-10) and an odds ratio (OR) based on cases vs controls of 1.26 [95% C. I. 1.12-1.41] and for BDNF rs988712*G with P = 5.2 x 10(-17) and an OR of 1.36 [95% C. I. 1.20-1.55]. KCNMA1 rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (P = 0.0001) and fat cell (P = 0.04) expression of KCNMA1 was increased in obesity. Conclusions: We have identified KCNMA1 as a new susceptibility locus for obesity, and confirmed the association of the BDNF locus at the genome-wide significant level.
  •  
5.
  •  
6.
  • Lindqvist, Johan, 1985- (författare)
  • Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Congenital myopathies are a rare and heterogeneous group of diseases. They are primarily characterised by skeletal muscle weakness and disease-specific pathological features. They harshly limit ordinary life and in severe cases, these myopathies are associated with early death of the affected individuals. The congenital myopathies investigated in this thesis are nemaline myopathy and myofibrillar myopathy. These diseases are usually caused by missense mutations in genes encoding myofibrillar proteins, but the exact mechanisms by which the point mutations in these proteins cause the overall weakness remain mysterious. Hence, in this thesis two different nemaline myopathy-causing actin mutations and one myofibrillar myopathy-causing myosin-mutation found in both human patients and mouse models were used to investigate the cascades of molecular and cellular events leading to weakness.I performed a broad range of functional and structural experiments including skinned muscle fibre mechanics, small-angle X-ray scattering as well as immunoblotting and histochemical techniques. Interestingly, according to my results, point mutations in myosin and actin differently modify myosin binding to actin, cross-bridge formation and muscle fibre force production revealing divergent mechanisms, that is, gain versus loss of function (papers I, II and IV). In addition, one point mutation in actin appears to have muscle-specific effects.  The presence of that mutant protein in respiratory muscles, i.e. diaphragm, has indeed more damaging consequences on myofibrillar structure than in limb muscles complexifying the pathophysiological mechanisms (paper II).As numerous atrophic muscle fibres can be seen in congenital myopathies, I also considered this phenomenon as a contributing factor to weakness and characterised the underlying causes in presence of one actin mutation. My results highlighted a direct muscle-specific up-regulation of the ubiquitin-proteasome system (paper III).All together, my research work demonstrates that mutation- and muscle-specific mechanisms trigger the muscle weakness in congenital myopathies. This gives important insights into the pathophysiology of congenital myopathies and will undoubtedly help in designing future therapies.
  •  
7.
  • Rosqvist, Fredrik, et al. (författare)
  • Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:7, s. 2356-2368
  • Tidskriftsartikel (refereegranskat)abstract
    • Excess ectopic fat storage is linked to type 2 diabetes. The importance of dietary fat composition for ectopic fat storage in humans is unknown. We investigated liver fat accumulation and body composition during overfeeding saturated (SFA) or polyunsaturated (PUFA) fat. LIPOGAIN was a double-blind, parallel-group, randomized trial. Thirty-nine young and normal-weight individuals were overfed muffins high in SFA (palm oil) or n-6 PUFA (sunflower oil) for 7 weeks. Liver fat, visceral (VAT), subcutaneous abdominal (SAT), and total adipose tissue (TAT), pancreatic fat, and lean tissue was assessed by MRI. Transcriptomics were performed in SAT. Both groups gained similar weight. SFA however markedly increased liver fat compared with PUFA and caused 2-fold larger increase in VAT than PUFA. Conversely, PUFA caused a nearly 3-fold larger increase in lean tissue than SFA. Increase in liver fat directly correlated with changes in plasma SFA and inversely with PUFA. Genes involved in regulating energy dissipation, insulin resistance, body composition and fat cell differentiation in SAT were differentially regulated between diets, and associated with increased PUFA in SAT. In conclusion, overeating SFA promotes hepatic and visceral fat storage whereas excess energy from PUFA may instead promote lean tissue in healthy humans.
  •  
8.
  • van Wieringen, Tijs, 1979- (författare)
  • Intra- and Extracellular Modulation of Integrin-directed Connective Tissue Cell Contraction
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • All blood vessels in the microvasculature are embedded in loose connective tissue, which regulates the transport of fluid to and from tissues. The intersti-tial fluid pressure (IFP) is one of the forces that control this transport. A lowering of IFP in vivo results in an increased transport of fluid from the circulation into the underhydrated connective tissues, resulting in edema formation. During homeostasis, contractile connective tissue cells exert a tension on the connective tissue fibrous network by binding with β1 in-tegrins, thereby actively controlling IFP. During inflammation, the IFP is lowered but platelet-derived growth factor (PDGF)-BB induces an IFP nor-malization dependent on integrin αVβ3. We demonstrate that extracellular proteins from Streptococcus equi subspecies equi modulated cell-mediated and integrin αVβ3-directed collagen gel contraction in vitro. One of these proteins, the collagen- and fibronectin binding FNE, stimulated contraction by a process dependent on fibronectin synthesis. This study identified a pos-sible novel virulence mechanism for bacteria based on the ability of bacteria to modulate the edema response. Another protein, the collagen-binding pro-tein CNE, inhibited contraction and this led to the identification of sites in collagen monomers that potentially are involved in connecting αVβ3 to the collagen network. PDGF-BB and prostaglandin E1 (PGE1) stimulate and inhibit collagen gel contraction in vitro and normalize and lower IFP, respec-tively. We showed that these agents affected both similar and different sets of actin-binding proteins. PDGF-BB stimulated actin cytoskeleton dynamics whereas PGE1 inhibited processes dependent on cytoskeletal motor and adhesive functions, suggesting that these different activities may partly ex-plain the contrasting effects of PGE1 and PDGF-BB on contraction and IFP. Mutation of the phosphatidylinositol 3’-kinase (PI3K), but not phospholipase C (PLC)γ activation site, rendered cells unable to respond to PDGF-BB in contraction and in activation of the actin binding and severing protein cofilin. Ability to activate cofilin after PDGF-BB stimulation correlated with ability to respond to PDGF-BB in contraction, suggesting a role for cofilin in this process downstream of PDGF receptor-activated PI3K. Many proteins can modulate contraction either by affecting the extracellular matrix and cell adhesions or by altering cytoskeletal dynamics. Knowledge on how these proteins might influence IFP is likely to be of clinical importance for treat-ment of inflammatory conditions including anaphylaxis, septic shock and also carcinoma growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Arner, Peter (4)
Dahlman, Ingrid (3)
Kere, Juha (2)
Axelsson, Tomas (2)
Risérus, Ulf (2)
Hamsten, Anders (2)
visa fler...
Hoffstedt, Johan (2)
Clement, Karine (2)
Johansson, Lars (1)
Berglund, Lars (1)
Larsson, Anders (1)
Bergström, Ulrika (1)
Bucht, Anders (1)
Ahlström, Håkan (1)
Rydén, Mikael (1)
Arner, Anders (1)
Dickson, Suzanne L., ... (1)
Toft, Eva (1)
Taube, Magdalena (1)
Wiren, Mikael (1)
Pedersen, Oluf (1)
Hansen, Torben (1)
Thorell, Anders (1)
Langin, Dominique (1)
Kullberg, Joel (1)
Galan, Pilar (1)
Cedernaes, Jonathan (1)
Naslund, Erik (1)
Hansson, Caroline, 1 ... (1)
Sorensen, Thorkild I ... (1)
Andersson, Daniel P. (1)
Lofgren, Patrik (1)
Qvisth, Veronica (1)
Bringman, Sven (1)
Thorne, Anders (1)
Johansson, Linda (1)
Jansson, John-Olov, ... (1)
van Hage, Marianne (1)
Arnér, Elias S. J. (1)
Iggman, David (1)
Brodin, David (1)
Mejhert, Niklas (1)
Bamberg, Krister (1)
William-Olsson, Lena (1)
Johansson, Ulrika (1)
Hartleib-Geschwindne ... (1)
Sällström, Johan (1)
Hebebrand, Johannes (1)
Benrick, Anna, 1979- (1)
Silveira, Angela (1)
visa färre...
Lärosäte
Karolinska Institutet (6)
Göteborgs universitet (1)
Umeå universitet (1)
Lunds universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy