SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arner Anders) ;pers:(Hamsten Anders)"

Sökning: WFRF:(Arner Anders) > Hamsten Anders

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jiao, Hong, et al. (författare)
  • Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene for Human Obesity
  • 2011
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 96:6, s. E962-E966
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Previous studies suggest a role for fibroblast growth factor receptor 1 (FGFR1) in the regulation of energy balance. Objective: Our objective was to investigate whether FGFR1 is an obesity gene by genetic association and functional studies. Design: The study was designed to genotype common FGFR1 single-nucleotide polymorphisms (SNP) in large cohorts, confirm significant results in additional cohorts, and measure FGFR1 expression in human adipose tissue and in rodent hypothalamus. Setting: General community and referral centers for specialized care was the setting for the study. Participants: We genotyped FGFR1 SNP in 2438 obese and 2115 lean adults and 985 obese and 532 population-based children. Results were confirmed in 928 obese and 2738 population-based adults and 487 obese and 441 lean children. Abdominal sc adipose tissue was investigated in 202 subjects. We also investigated diet-induced, obese fasting, and fed rats. Main Outcome Measures: We analyzed the association between FGFR1 SNP and obesity. In secondary analyses, we related adipose FGFR1 expression to genotype, obesity, and degree of fat cell differentiation and related hypothalamic FGFR1 to energy balance. Results: FGFR1 rs7012413*T was nominally associated with obesity in all four cohorts; metaanalysis odds ratio = 1.17 (95% confidence interval = 1.10-1.25), and P = 1.8 x 10(-6), which was P = 7.0 x 10(-8) in the recessive model. rs7012413*T was associated with FGFR1 expression in adipose tissue (P < 0.0001). In this organ, but not in skeletal muscle, FGFR1 mRNA (P < 0.0001) and protein (P < 0.05) were increased in obesity. In rats, hypothalamic expression of FGFR1 declined after fasting (P < ]0.001) and increased after diet-induced obesity (P < 0.05). Conclusions: FGFR1 is a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite.
  •  
3.
  • Jiao, Hong, et al. (författare)
  • Genome wide association study identifies KCNMA1 contributing to human obesity
  • 2011
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 4, s. 51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity. Methods: We performed a GWA analysis in 164 morbidly obese subjects (BMI: body mass index > 40 kg/m(2)) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal P< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for 14 adults. Results: Potassium channel, calcium activated, large conductance, subfamily M, alpha member (KCNMA1) rs2116830*G and BDNF rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for KCNMA1 rs2116830*G with P = 2.82 x 10(-10) and an odds ratio (OR) based on cases vs controls of 1.26 [95% C. I. 1.12-1.41] and for BDNF rs988712*G with P = 5.2 x 10(-17) and an OR of 1.36 [95% C. I. 1.20-1.55]. KCNMA1 rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (P = 0.0001) and fat cell (P = 0.04) expression of KCNMA1 was increased in obesity. Conclusions: We have identified KCNMA1 as a new susceptibility locus for obesity, and confirmed the association of the BDNF locus at the genome-wide significant level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy