SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arnett Donna K.) ;pers:(Lehtimaki Terho)"

Sökning: WFRF:(Arnett Donna K.) > Lehtimaki Terho

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sung, Yun Ju, et al. (författare)
  • A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 28:15, s. 2615-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene–smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene–smoking interaction analysis and 38 were newly identified (P < 5 × 10−8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
  •  
2.
  • Tanaka, Toshiko, et al. (författare)
  • Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
  • 2013
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 97:6, s. 1395-1402
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 x 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n 7724) provided additional replication data. Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (beta +/- SE: 0.25 +/- 0.04%; P = 1.68 x 10(-8)) and lower fat (beta = SE: -0.21 +/- 0.04%; P = 1.57 x 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI) increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (beta +/- SE: 0.10 +/- 0.02%; P = 9.96 x 10(-10)), independent of BMI (after adjustment for BMI, beta +/- SE: 0.08 +/- 0.02%; P = 3.15 x 10(-7)). Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
  •  
3.
  • Ding, Ming, et al. (författare)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833 .- 0959-8138. ; 356
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
4.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy