SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Artner Isabella) ;pers:(Fex Malin)"

Sökning: WFRF:(Artner Isabella) > Fex Malin

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bacos, Karl, et al. (författare)
  • Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets
  • 2023
  • Ingår i: The Journal of clinical investigation. - 0021-9738 .- 1558-8238. ; 133:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β-cells. To identify candidates contributing to T2D pathophysiology, we studied human pancreatic islets from ~300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified islet expression changes may predispose to diabetes, as they associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β-cells based on single-cell RNA-sequencing data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D-SNPs. Mouse knock-out strains demonstrated that T2D-associated candidates regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β-cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we identified molecular alterations in human pancreatic islets contributing to β-cell dysfunction in T2D pathophysiology.
  •  
2.
  • Bennet, Hedvig, et al. (författare)
  • Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans.
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 59:4, s. 744-754
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells.
  •  
3.
  • Cataldo Bascuñan, Luis Rodrigo, et al. (författare)
  • Serotonergic Regulation of Insulin Secretion
  • 2019
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1716 .- 1748-1708. ; 225:1
  • Forskningsöversikt (refereegranskat)abstract
    • The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signaling network in islets involving 5-HT is being unraveled. With more than fourteen different 5-HT receptors expressed in human islets, and receptor independent mechanisms in insulin producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of Type 2 Diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signaling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homeostasis. In the present review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas. This article is protected by copyright. All rights reserved.
  •  
4.
  •  
5.
  • Cataldo, Luis Rodrigo, et al. (författare)
  • The MafA-target gene PPP1R1A regulates GLP1R-mediated amplification of glucose-stimulated insulin secretion in β-cells
  • 2021
  • Ingår i: Metabolism: Clinical and Experimental. - : Elsevier BV. - 1532-8600.
  • Tidskriftsartikel (refereegranskat)abstract
    • The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in β-cells and that its expression is reduced in dysfunctional β-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and β-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in β-cell lines impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical β-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the β-cell transcription factor MafA is required for PPP1R1A expression and that reduced β-cell PPP1R1A levels impaired β-cell function and contributed to β-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic β-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.
  •  
6.
  • Ganic, Elvira, et al. (författare)
  • Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes.
  • 2015
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 468:4, s. 629-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet β cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic β cells suggesting that loss of Mao contributes to β cell dysfunction. MaoB expression was also reduced in β cells of MafA-deficient mice, a mouse model for β cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human β cells. These findings demonstrate that regulation of monoamine levels by Mao activity in β cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the β cell dysfunction in type 2 diabetes.
  •  
7.
  • Ganic, Elvira, et al. (författare)
  • MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes.
  • 2016
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 14:8, s. 1991-2002
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoamine and acetylcholine neurotransmitters from the autonomic nervous system (ANS) regulate insulin secretion in pancreatic islets. The molecular mechanisms controlling neurotransmitter signaling in islet β cells and their impact on diabetes development are only partially understood. Using a glucose-intolerant, MafA-deficient mouse model, we demonstrate that MAFA controls ANS-mediated insulin secretion by activating the transcription of nicotinic (ChrnB2 and ChrnB4) and adrenergic (Adra2A) receptor genes, which are integral parts of acetylcholine- and monoamine-signaling pathways. We show that acetylcholine-mediated insulin secretion requires nicotinic signaling and that nicotinic receptor expression is positively correlated with insulin secretion and glycemic control in human donor islets. Moreover, polymorphisms spanning MAFA-binding regions within the human CHRNB4 gene are associated with type 2 diabetes. Our data show that MAFA transcriptional activity is required for establishing β cell sensitivity to neurotransmitter signaling and identify nicotinic signaling as a modulator of insulin secretion impaired in type 2 diabetes.
  •  
8.
  • Mazur, Magdalena, et al. (författare)
  • Microphthalmia transcription factor regulates pancreatic β-cell function
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:8, s. 2834-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function.
  •  
9.
  • Singh, Tania, et al. (författare)
  • Loss of MafA and MafB expression promotes islet inflammation.
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA-/-MafB+/-, but not MafA-/- islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy