SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arvidsson B) ;pers:(Arvidsson A.)"

Sökning: WFRF:(Arvidsson B) > Arvidsson A.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvidsson, A., et al. (författare)
  • Chemical and topographical analyses of dentine surfaces after Carisolv™ treatment
  • 2002
  • Ingår i: Journal of Dentistry. - 0300-5712 .- 1879-176X. ; 30:2-3, s. 67-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives. The aim of this study was to characterise the surface chemistry of cavities after chemomechanical caries excavation, and also to measure the surface topography after caries removal with Carisolv™ or burs, followed by acid etching. Methods. Fourier transform (FT)-Raman spectroscopy was used to study the relative amounts of organic material and minerals of sound enamel, dentine, and cavities, after caries excavation. Fourier transform infrared spectroscopy (FTIR) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) were used for detection of Carisolv™ substances (i.e. mainly sodium hypochlorite, amino acids, and the gelling agent carboxymethyl cellulose). In total, 19 carious and 11 sound extracted teeth were used for the chemical analyses. Topographic examination of 30 carious extracted teeth was performed with a contact profilometer. Results. The relative amounts of organic material and minerals did not significantly differ between sound dentine and the cavities after caries removal with burs or Carisolv™. The FTIR analyses indicated extremely small amounts of Carisolv™ substances at the cavity surface, but the LA-ICP-MS analyses did not confirm those findings. Furthermore, the topographical parameters did not significantly differ between etched cavities after caries removal using burs or Carisolv™. Conclusions. The chemical and topographical analyses in the present study imply that any differences between the cavities after caries excavation with burs or with Carisolv™ are insignificant. © 2002 Elsevier Science Ltd. All rights reserved.
  •  
2.
  •  
3.
  • Susilo, Y. B., et al. (författare)
  • Significant and rapid reduction of free endotoxin using a dialkylcarbamoyl chloride-coated wound dressing
  • 2022
  • Ingår i: Journal of wound care. - : Mark Allen Group. - 0969-0700 .- 2052-2916. ; 31:6, s. 502-509
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Endotoxin causes inflammation and can impair wound healing. Conventional methods that reduce bioburden in wounds by killing microorganisms using antibiotics, topical antimicrobials or antimicrobial dressings may induce endotoxin release from Gram-negative bacteria. Another approach is to reduce bioburden by adsorbing microorganisms, without killing them, using dialkylcarbamoyl chloride (DACC)-coated wound dressings. This study evaluated the endotoxin-binding ability of a DACC-coated wound dressing (Sorbact Compress, Abigo Medical AB, Sweden) in vitro, including its effect on the level of natural endotoxin released from Gram-negative bacteria. Method: Different concentrations of purified Pseudomonas aeruginosa endotoxin and a DACC-coated dressing were incubated at 37 degrees C for various durations. After incubation, the dressing was removed and endotoxin concentration in the solution was quantified using a Limulus amebocyte lysate (LAL) assay. The DACC-coated dressing was also incubated with Pseudomonas aeruginosa cells for one hour at 37 degrees C. After incubation, the dressing and bacterial cells were removed and shed endotoxin remaining in the solution was quantified. Results: Overnight incubation of the DACC-coated wound dressing with various concentrations of purified Pseudomonas aeruginosa endotoxin (96-11000 EU/ml) consistently and significantly reduced levels of free endotoxin by 93-99% (p<0.0001). A significant endotoxin reduction of 39% (p<0.001) was observed after five minutes. The DACC-coated dressing incubated with clinically relevant Pseudomonas aeruginosa cells also reduced shed endotoxin by >99.95% (p<0.0001). Conclusion: In this study, we showed that a DACC-coated wound dressing efficiently and rapidly binds both purified and shed endotoxin from Pseudomonas aeruginosa in vitro. This ability to remove both endotoxin and bacterial cells could promote the wound healing process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy