SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton K) ;pers:(Blennow Kaj 1958)"

Sökning: WFRF:(Ashton K) > Blennow Kaj 1958

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chatterjee, P., et al. (författare)
  • Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-beta Load
  • 2020
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 76:1, s. 291-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Objective: Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer's disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-beta load (NAL). Methods: Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65-90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR)<1.35 was classified as low NAL (n = 65) and >= 1.35 (n = 35) was classified as high NAL. Results: Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOE epsilon 4 carriage (p < 0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC = 0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma A beta(42/40) ratio (AUC = 0.829). Conclusion: The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required.
  •  
2.
  • Ally, M., et al. (författare)
  • Cross-sectional and longitudinal evaluation of plasma glial fibrillary acidic protein to detect and predict clinical syndromes of Alzheimer's disease
  • 2023
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - 2352-8729. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231.Methods: Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes.Results: Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia.Discussion: Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.
  •  
3.
  • Needham, Edward J, et al. (författare)
  • Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.
  • 2021
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 207:1, s. 90-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.
  •  
4.
  • Newcombe, Virginia F J, et al. (författare)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Tidskriftsartikel (refereegranskat)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
5.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers.
  • 2019
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from recent clinical studies suggest that cerebrospinal fluid (CSF) biomarkers that are indicative of Alzheimer's disease (AD) can be replicated in blood, e.g. amyloid-beta peptides (Aβ42 and Aβ40) and neurofilament light chain (NFL). Such data proposes that blood is a rich source of potential biomarkers reflecting central nervous system pathophysiology and should be fully explored for biomarkers that show promise in CSF. Recently, soluble fragments of the triggering receptor expressed on myeloid cells 2 (sTREM2) protein in CSF have been reported to be increased in prodromal AD and also in individuals with TREM2 rare genetic variants that increase the likelihood of developing dementia.In this study, we measured the levels of plasma sTREM2 and plasma NFL using the MesoScale Discovery and single molecule array platforms, respectively, in 48 confirmed TREM2 rare variant carriers and 49 non-carriers.Our results indicate that there are no changes in plasma sTREM2 and NFL concentrations between TREM2 rare variant carriers and non-carriers. Furthermore, plasma sTREM2 is not different between healthy controls, mild cognitive impairment (MCI) or AD.Concentrations of plasma sTREM2 do not mimic the recent changes found in CSF sTREM2.
  •  
6.
  • Bilgel, M., et al. (författare)
  • Longitudinal changes in Alzheimer's-related plasma biomarkers and brain amyloid
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260 .- 1552-5279. ; 19:10, s. 4335-45
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONUnderstanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODSWe examined the temporal order of changes in plasma amyloid-beta ratio (A beta 42/A beta 40${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios (p-tau181/A beta 42$\text{p-tau181}/\mathrm{A}{\beta}_{42}$, p-tau231/A beta 42$\text{p-tau231}/\mathrm{A}{\beta}_{42}$) relative to C-11-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTSPiB groups exhibited different rates of longitudinal change in A beta 42/A beta 40(beta=5.41x10-4,SE=1.95x10-4,p=0.0073)${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}\ ( {\beta \ = \ 5.41 \times {{10}}<^>{ - 4},{\rm{\ SE\ }} = \ 1.95 \times {{10}}<^>{ - 4},\ p\ = \ 0.0073} )$. Change in brain amyloid correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). The greatest relative decline in A beta 42/A beta 40${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ (-1%/year) preceded brain amyloid positivity by 41 years (95% CI = [32, 53]). DISCUSSIONPlasma A beta 42/A beta 40${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time.
  •  
7.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
8.
  • Bucci, M., et al. (författare)
  • Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic
  • 2023
  • Ingår i: Translational Psychiatry. - 2158-3188. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid & beta; (A & beta;) 42/40 ratio, neurofilament light) in 126 patients (age = 65 & PLUSMN; 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [F-18]flutemetamol PET (A & beta;-PET). A & beta;-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 A & beta;+ and 54 A & beta;- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect A & beta;-PET+ using the different biomarkers. In the whole cohort, the A & beta;-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with A & beta;42/40 ratio. While in the whole MCI group, only GFAP was associated with A & beta; PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating A & beta;+ and A & beta;- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of A & beta;-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out A & beta;-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.
  •  
9.
  • Chatterjee, Pratishtha, et al. (författare)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
10.
  • Chatterjee, Pratishtha, et al. (författare)
  • Plasma neurofilament light chain and amyloid-β are associated with the kynurenine pathway metabolites in preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood markers indicative of neurodegeneration (neurofilament light chain; NFL), Alzheimer's disease amyloid pathology (amyloid-β; Aβ), and neuroinflammation (kynurenine pathway; KP metabolites) have been investigated independently in neurodegenerative diseases. However, the association of these markers of neurodegeneration and AD pathology with neuroinflammation has not been investigated previously. Therefore, the current study examined whether NFL and Aβ correlate with KP metabolites in elderly individuals to provide insight on the association between blood indicators of neurodegeneration and neuroinflammation.Correlations between KP metabolites, measured using liquid chromatography and gas chromatography coupled with mass spectrometry, and plasma NFL and Aβ concentrations, measured using single molecule array (Simoa) assays, were investigated in elderly individuals aged 65-90years, with normal global cognition (Mini-Mental State Examination Score≥26) from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort.A positive correlation between NFL and the kynurenine to tryptophan ratio (K/T) reflecting indoleamine 2,3-dioxygenase activity was observed (r=.451, p<.0001). Positive correlations were also observed between NFL and kynurenine (r=.364, p<.0005), kynurenic acid (r=.384, p<.0001), 3-hydroxykynurenine (r=.246, p=.014), anthranilic acid (r=.311, p=.002), and quinolinic acid (r=.296, p=.003). Further, significant associations were observed between plasma Aβ40 and the K/T (r=.375, p<.0005), kynurenine (r=.374, p<.0005), kynurenic acid (r=.352, p<.0005), anthranilic acid (r=.381, p<.0005), and quinolinic acid (r=.352, p<.0005). Significant associations were also observed between plasma Aβ42 and the K/T ratio (r=.215, p=.034), kynurenic acid (r=.214, p=.035), anthranilic acid (r=.278, p=.006), and quinolinic acid (r=.224, p=.027) in the cohort. On stratifying participants based on their neocortical Aβ load (NAL) status, NFL correlated with KP metabolites irrespective of NAL status; however, associations between plasma Aβ and KP metabolites were only pronounced in individuals with high NAL while associations in individuals with low NAL were nearly absent.The current study shows that KP metabolite changes are associated with biomarker evidence of neurodegeneration. Additionally, the association between KP metabolites and plasma Aβ seems to be NAL status dependent. Finally, the current study suggests that an association between neurodegeneration and neuroinflammation manifests in the periphery, suggesting that preventing cytoskeleton cytotoxicity by KP metabolites may have therapeutic potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy