SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ashton Nicholas J) ;pers:(Simrén Joel 1996)"

Search: WFRF:(Ashton Nicholas J) > Simrén Joel 1996

  • Result 1-10 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Needham, Edward J, et al. (author)
  • Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.
  • 2021
  • In: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 207:1, s. 90-100
  • Journal article (peer-reviewed)abstract
    • Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.
  •  
2.
  • Alawode, Deborah O T, et al. (author)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • In: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
3.
  • Newcombe, Virginia F J, et al. (author)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Journal article (peer-reviewed)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
4.
  • Chatterjee, Pratishtha, et al. (author)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Journal article (peer-reviewed)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
5.
  • Erickson, Pontus, et al. (author)
  • Prevalence and Clinical Implications of a β-Amyloid-Negative, Tau-Positive Cerebrospinal Fluid Biomarker Profile in Alzheimer Disease.
  • 2023
  • In: JAMA neurology. - 2168-6157. ; 80:9, s. 969-79
  • Journal article (peer-reviewed)abstract
    • Knowledge is lacking on the prevalence and prognosis of individuals with a β-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile.To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications.This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023.Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240).Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET.A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile.Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals.
  •  
6.
  • Srikrishna, Meera, et al. (author)
  • CT-based volumetric measures obtained through deep learning: Association with biomarkers of neurodegeneration
  • 2024
  • In: Alzheimers & Dementia. - 1552-5260. ; 20:1, s. 629-640
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONCranial computed tomography (CT) is an affordable and widely available imaging modality that is used to assess structural abnormalities, but not to quantify neurodegeneration. Previously we developed a deep-learning-based model that produced accurate and robust cranial CT tissue classification.MATERIALS AND METHODSWe analyzed 917 CT and 744 magnetic resonance (MR) scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from participants of the Memory Clinic Cohort, Singapore. We tested associations between six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and imaging biomarkers, and measures of cognition.RESULTSCTVMs differentiated cognitively healthy individuals from dementia and prodromal dementia patients with high accuracy levels comparable to MR-based measures. CTVMs were significantly associated with measures of cognition and biochemical markers of neurodegeneration.DISCUSSIONThese findings suggest the potential future use of CT-based volumetric measures as an informative first-line examination tool for neurodegenerative disease diagnostics after further validation.HIGHLIGHTSComputed tomography (CT)-based volumetric measures can distinguish between patients with neurodegenerative disease and healthy controls, as well as between patients with prodromal dementia and controls.CT-based volumetric measures associate well with relevant cognitive, biochemical, and neuroimaging markers of neurodegenerative diseases.Model performance, in terms of brain tissue classification, was consistent across two cohorts of diverse nature.Intermodality agreement between our automated CT-based and established magnetic resonance (MR)-based image segmentations was stronger than the agreement between visual CT and MR imaging assessment.
  •  
7.
  • Ashton, Nicholas J., et al. (author)
  • Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration.
  • 2021
  • In: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 13:1
  • Journal article (peer-reviewed)abstract
    • We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury.Amyloid beta (Aβ)42, Aβ40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays.LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r > 0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for Aβ42/40 (r = 0.63-0.86) and serum t-tau (r = 0.46-0.64). Freeze-thaw cycles highly influenced levels of serum Aβ and t-tau (P < .0001), and minor decreases in EDTA Aβ40 and EDTA p-tau181 were found after freeze-thaw cycle 4 (P < .05).The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for Aβ42, Aβ40, and t-tau. Freeze-thaw cycles > 3 should be avoided for p-tau181.
  •  
8.
  • Benussi, Alberto, et al. (author)
  • Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration.
  • 2020
  • In: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:9, s. 960-967
  • Journal article (peer-reviewed)abstract
    • To assess the diagnostic and prognostic value of serum neurofilament light (NfL) and serum phospho-Tau181 (p-Tau181) in a large cohort of patients with frontotemporal lobar degeneration (FTLD).In this retrospective study, performed on 417 participants, we analysed serum NfL and p-Tau181 concentrations with an ultrasensitive single molecule array (Simoa) approach. We assessed the diagnostic values of serum biomarkers in the differential diagnosis between FTLD, Alzheimer's disease (AD) and healthy ageing; their role as markers of disease severity assessing the correlation with clinical variables, cross-sectional brain imaging and neurophysiological data; their role as prognostic markers, considering their ability to predict survival probability in FTLD.We observed significantly higher levels of serum NfL in patients with FTLD syndromes, compared with healthy controls, and lower levels of p-Tau181 compared with patients with AD. Serum NfL concentrations showed a high accuracy in discriminating between FTLD and healthy controls (area under the curve (AUC): 0.86, p<0.001), while serum p-Tau181 showed high accuracy in differentiating FTLD from patients with AD (AUC: 0.93, p<0.001). In FTLD, serum NfL levels correlated with measures of cognitive function, disease severity and behavioural disturbances and were associated with frontotemporal atrophy and indirect measures of GABAergic deficit. Moreover, serum NfL concentrations were identified as the best predictors of survival probability.The assessment of serum NfL and p-Tau181 may provide a comprehensive view of FTLD, aiding in the differential diagnosis, in staging disease severity and in defining survival probability.
  •  
9.
  • Brum, Wagner S., et al. (author)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • In: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
10.
  • Dittrich, Anna, 1972, et al. (author)
  • Association of Chronic Kidney Disease With Plasma NfL and Other Biomarkers of Neurodegeneration: The H70 Birth Cohort Study in Gothenburg.
  • 2023
  • In: Neurology. - 1526-632X. ; 101:3, s. e277-e288
  • Journal article (peer-reviewed)abstract
    • Studies associate chronic kidney disease (CKD) with neurodegeneration. This study investigated the relationship between kidney function, blood, CSF, and structural brain MRI markers of neurodegeneration in a sample including individuals with and without CKD.Participants from the Gothenburg H70 Birth Cohort Study, with data on plasma neurofilament light (P-NfL), estimated glomerular filtration rate (eGFR), and structural brain MRI were included. Participants were invited to also have the CSF collected. The primary endpoint of this study was to determine any association between CKD and P-NfL. Secondary endpoints included cross-sectional associations between CKD, eGFR, and CSF-derived and MRI-derived markers of neurodegeneration and Alzheimer disease (AD) pathology (MRI: cortical thickness, hippocampal volume, lateral ventricle volume, and white matter lesion volume; CSF: β-amyloid (Aβ) 42, Aβ42/40, Aβ42/p-tau, t-tau, p-tau, and NfL). Participants with P-NfL and eGFR at baseline were re-examined on eGFR, 5.5 (5.3-6.1) years (median; IQR) after the first visit, and the predictive value of P-NfL levels on incident CKD was estimated longitudinally, using a Cox proportional hazards model.We included 744 participants, 668 without CKD (age 71 [70-71] years, 50% males) and 76 with CKD (age 71 [70-71] years, 39% males). Biomarkers from the CSF were analyzed in 313 participants. A total of 558 individuals returned for a re-examination of eGFR (75% response rate, age 76 [76; 77] years, 48% males, 76 new cases of CKD). Participants with CKD had higher P-NfL levels than those with normal kidney function (median; 18.8 vs 14.1 pg/mL, p < 0.001), while MRI and CSF markers were similar between the groups. P-NfL was independently associated with CKD after adjustment for confounding variables, including hypertension and diabetes (OR; 3.231, p < 0.001), in a logistic regression model. eGFR and CSF Aβ 42/40: R = 0.23, p = 0.004 correlated in participants with Aβ42 pathology. P-NfL levels in the highest quartile were associated with incident CKD at follow-up (HR; 2.39 [1.21: 4.72]).In a community-based cohort of 70-year olds, P-NfL was associated with both prevalent and incident CKD, while CSF and/or imaging measures did not differ by CKD status. Participants with CKD and dementia presented similar levels of P-NfL.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 26
Type of publication
journal article (26)
Type of content
peer-reviewed (26)
Author/Editor
Ashton, Nicholas J. (26)
Blennow, Kaj, 1958 (25)
Zetterberg, Henrik, ... (25)
Karikari, Thomas (11)
Lantero Rodriguez, J ... (8)
show more...
Zettergren, Anna, 19 ... (4)
Skoog, Ingmar, 1954 (3)
Kern, Silke (3)
Montoliu-Gaya, Laia (3)
Aarsland, Dag (2)
Westman, Eric (2)
Westman, E (2)
Pannee, Josef, 1979 (2)
Menon, David K. (2)
Snellman, Anniina (2)
Galasko, D (1)
Boada, Mercè (1)
Tsolaki, Magda (1)
Gisslén, Magnus, 196 ... (1)
Nilsson, Staffan, 19 ... (1)
Tenovuo, Olli (1)
Hilal, S (1)
Baker, Suzanne L. (1)
Tegner, Yelverton, P ... (1)
Piehl, Fredrik (1)
Al Nimer, Faiez (1)
Wahlund, L. O. (1)
Hansson, Oskar (1)
Blennow, Kaj (1)
Andersson, Lars-Magn ... (1)
Mattsson-Carlgren, N ... (1)
Pereira, Joana B. (1)
van Westen, Danielle (1)
Soininen, Hilkka (1)
Suárez-Calvet, Marc (1)
Minguillón, Carolina (1)
Fauria, Karine (1)
Alawode, Deborah O T (1)
Heslegrave, Amanda J (1)
O Connor, Antoinette (1)
Weston, Philip S J (1)
Keshavan, Ashvini (1)
Gobom, Johan (1)
Paterson, Ross W (1)
Schott, Jonathan M (1)
Fox, Nick C (1)
Volpe, Giovanni, 197 ... (1)
Nellgård, Bengt, 195 ... (1)
Kvartsberg, Hlin, 19 ... (1)
show less...
University
University of Gothenburg (26)
Karolinska Institutet (6)
Lund University (2)
Luleå University of Technology (1)
Language
English (26)
Research subject (UKÄ/SCB)
Medical and Health Sciences (26)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view