SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton Nicholas J.) ;pers:(Snellman Anniina)"

Sökning: WFRF:(Ashton Nicholas J.) > Snellman Anniina

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Woo, M. S., et al. (författare)
  • Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals
  • 2024
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 20:2, s. 1166-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONWe set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (A beta) positive participants using plasma biomarkers.METHODSIn this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18F]AZD4694 and tau-PET with [18F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in A beta+ individuals.RESULTSHighest associations with tau positivity in A beta+ individuals were found for plasma pTau-217 (AUC [CI95%] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95%] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity.DISCUSSIONThe potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice.HighlightsWe found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity.We found that in A beta+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity.Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
  •  
2.
  • Alawode, Deborah O T, et al. (författare)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
3.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5343-5354
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONFluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODSWe measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (A beta) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTSCSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired A beta-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with A beta PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSIONNTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTSAn assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated.NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration.NTA-tau can successfully track in vivo tau deposition across the AD continuum.Plasma NTA-tau increased over time only in cognitively impaired amyloid-beta positive individuals.
  •  
4.
  • Lussier, F. Z., et al. (författare)
  • Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals
  • 2021
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer's disease. Most recently, plasma phosphorylated tau181 has shown excellent performance. The relationship between plasma phosphorylated tau181 and cerebral metabolic dysfunction assessed by [F-18]fluorodeoxyglucose PET in Alzheimer's disease is still unknown. This study was performed on 892 older individuals (297 cognitively unimpaired; 595 cognitively impaired) from the Alzheimer's Disease Neuroimaging Initiative cohort. Plasma phosphorylated tau181 was assessed using single molecular array technology and metabolic dysfunction was indexed by [F-18]fluorodeoxyglucose PET. Cross-sectional associations between plasma and CSF phosphorylated tau181 and [F-18]fluorodeoxyglucose were assessed using voxelwise linear regression models, with individuals stratified by diagnostic group and by beta-amyoid status. Associations between baseline plasma phosphorylated tau181 and longitudinal (24months) rate of brain metabolic decline were also assessed in 389 individuals with available data using correlations and voxelwise regression models. Plasma phosphorylated tau181 was elevated in beta-amyloid positive and cognitively impaired individuals as well as in apolipoprotein E epsilon 4 carriers and was significantly associated with age, worse cognitive performance and CSF phosphorylated tau181. Cross-sectional analyses showed strong associations between plasma phosphorylated tau181 and fluorodewcyglucose PET in cognitively impaired and beta-amyloid positive individuals. Voxelwise longitudinal analyses showed that baseline plasma phosphorylated taul 81 concentrations were significantly associated with annual rates of metabolic decline in cognitively impaired individuals, bilaterally in the medial and lateral temporal lobes. The associations between plasma phosphorylated tau181 and reduced brain metabolism, primarily in cognitively impaired and in beta-amyloid positive individuals, supports the use of plasma phosphorylated tau181 as a simple, low-cost, minimally invasive and accessible tool to both assess current and predict future metabolic dysfunction associated with Alzheimer's disease, comparatively to PET, MRI and CSF methods.
  •  
5.
  • Snellman, Anniina, et al. (författare)
  • APOE epsilon 4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNeuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (A beta) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE epsilon 4 allele, the strongest genetic risk for sporadic AD.MethodsSixty 60-75-year-old APOE epsilon 4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent C-11-PK11195 PET (targeting 18-kDa translocator protein, TSPO), C-11-PiB PET (targeting A beta), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). C-11-PK11195 distribution volume ratios and C-11-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early A beta accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma A beta(1-42/1.40).ResultsIn our cognitively unimpaired sample, cortical C-11-PiB-binding increased according to APOE epsilon 4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite C-11-PK11195-binding did not differ between the APOE epsilon 4 gene doses (P = 0.27) or between A beta-positive and A beta-negative individuals (P = 0.81) and associated with higher A beta burden only in APOE epsilon 4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical C-11-PiB (Rho = 0.35, P = 0.040), but not C-11-PK11195-binding (Rho = 0.13, P = 0.47) in A beta-positive individuals. In the total cognitively unimpaired population, both higher composite C-11-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated C-11-PiB-binding was associated with lower APCC scores.ConclusionsOnly A beta burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE epsilon 4 gene dose. However, APOE epsilon 4 gene dose seemed to modulate the association between neuroinflammation and A beta.
  •  
6.
  • Grothe, Michel J., 1981, et al. (författare)
  • Associations of Fully Automated CSF and Novel Plasma Biomarkers With Alzheimer Disease Neuropathology at Autopsy.
  • 2021
  • Ingår i: Neurology. - 1526-632X. ; 97:12
  • Tidskriftsartikel (refereegranskat)abstract
    • To study cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) analyzed by fully automated Elecsys immunoassays in comparison to neuropathologic gold standards, and compare their accuracy to plasma phosphorylated tau (p-tau181) measured using a novel Simoa method.We studied ante-mortem Elecsys-derived CSF biomarkers in 45 individuals who underwent standardized post-mortem assessments of AD and non-AD neuropathologic changes at autopsy. In a subset of 26 participants, we also analysed ante-mortem levels of plasma p-tau181 and neurofilament light (NfL). Reference biomarker values were obtained from 146 amyloid-PET-negative healthy controls (HC).All CSF biomarkers clearly distinguished pathology-confirmed AD dementia (N=27) from HC (AUCs=0.86-1.00). CSF total-tau (t-tau), p-tau181, and their ratios with Aβ1-42, also accurately distinguished pathology-confirmed AD from non-AD dementia (N=8; AUCs=0.94-0.97). In pathology-specific analyses, intermediate-to-high Thal amyloid phases were best detected by CSF Aβ1-42 (AUC[95% CI]=0.91[0.81-1]), while intermediate-to-high CERAD neuritic plaques and Braak tau stages were best detected by CSF p-tau181 (AUC=0.89[0.79-0.99] and 0.88[0.77-0.99], respectively). Optimal Elecsys biomarker cut-offs were derived at 1097/229/19 pg/ml for Aβ1-42, t-tau, and p-tau181. In the plasma subsample, both plasma p-tau181 (AUC=0.91[0.86-0.96]) and NfL (AUC=0.93[0.87-0.99]) accurately distinguished pathology-confirmed AD (N=14) from HC. However, only p-tau181 distinguished AD from non-AD dementia cases (N=4; AUC=0.96[0.88-1.00]), and showed a similar, though weaker, pathologic specificity for neuritic plaques (AUC=0.75[0.52-0.98]) and Braak stage (AUC=0.71[0.44-0.98]) as CSF p-tau181.Elecsys-derived CSF biomarkers detect AD neuropathologic changes with very high discriminative accuracy in-vivo. Preliminary findings support the use of plasma p-tau181 as an easily accessible and scalable biomarker of AD pathology.This study provides Class II evidence that fully-automated CSF t-tau and p-tau181measurements discriminate between autopsy-confirmed Alzheimer's disease and other dementias.
  •  
7.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Clinical performance and head-to-head comparison of CSF p-tau235 with p-tau181, p-tau217 and p-tau231 in two memory clinic cohorts
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cerebrospinal fluid (CSF) p-tau235 is a novel biomarker highly specific of Alzheimer's disease (AD). However, CSF p-tau235 has only been studied in well-characterized research cohorts, which do not fully reflect the patient landscape found in clinical settings. Therefore, in this multicentre study, we investigated the performance of CSF p-tau235 to detect symptomatic AD in clinical settings and compared it with CSF p-tau181, p-tau217 and p-tau231.Methods CSF p-tau235 was measured using an in-house single molecule array (Simoa) assay in two independent memory clinic cohorts: Paris cohort (Lariboisiere Fernand-Widal University Hospital Paris, France; n=212) and BIODEGMAR cohort (Hospital del Mar, Barcelona, Spain; n=175). Patients were classified by the syndromic diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI] or dementia) and their biological diagnosis (amyloid-beta [A beta]+ or A beta -) Both cohorts included detailed cognitive assessments and CSF biomarker measurements (clinically validated core AD biomarkers [Lumipulse CSF A beta(1-42/40) ratio, p-tau181 and t-tau] and in-house developed Simoa CSF p-tau181, p-tau217 and p-tau231).Results High CSF p-tau235 levels were strongly associated with CSF amyloidosis regardless of the clinical diagnosis, being significantly increased in MCI A beta+ and dementia A beta+ when compared with all other A beta- groups (Paris cohort: P < 0.0001 for all; BIODEGMAR cohort: P < 0.05 for all). CSF p-tau235 was pronouncedly increased in the A+T+ profile group compared with A-T- and A+T- groups (P < 0.0001 for all). Moreover, CSF p-tau235 demonstrated high diagnostic accuracies identifying CSF amyloidosis in symptomatic cases (AUCs=0.86 to 0.96) and discriminating AT groups (AUCs=0.79 to 0.98). Overall, CSF p-tau235 showed similar performances to CSF p-tau181 and CSF p-tau231 when discriminating CSF amyloidosis in various scenarios, but lower than CSF p-tau217. Finally, CSF p-tau235 associated with global cognition and memory domain in both cohorts.Conclusions CSF p-tau235 was increased with the presence of CSF amyloidosis in two independent memory clinic cohorts. CSF p-tau235 accurately identified AD in both MCI and dementia patients. Overall, the diagnostic performance of CSF p-tau235 was comparable to that of other CSF p-tau measurements, indicating its suitability to support a biomarker-based AD diagnosis in clinical settings.
  •  
8.
  • Rial, Alexis Moscoso, et al. (författare)
  • CSF biomarkers and plasma p-tau181 as predictors of longitudinal tau accumulation: Implications for clinical trial design
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:12, s. 2614-2626
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Clinical trials targeting tau in Alzheimer's disease (AD) need to recruit individuals at risk of tau accumulation. Here, we studied cerebrospinal fluid (CSF) biomarkers and plasma phosphorylated tau (p-tau)181 as predictors of tau accumulation on positron emission tomography (PET) to evaluate implications for trial designs. Methods: We included older individuals who had serial tau-PET scans, baseline amyloid beta (Aβ)-PET, and baseline CSF biomarkers (n=163) or plasma p-tau181 (n=74). We studied fluid biomarker associations with tau accumulation and estimated trial sample sizes and screening failure reductions by implementing these markers into participant selection for trials. Results: P-tau181 in CSF and plasma predicted tau accumulation (r>0.36, P<.001), even in AD-continuum individuals with normal baseline tau-PET (A+T–; r>0.37, P<.05). Recruitment based on CSF biomarkers yielded comparable sample sizes to Aβ-PET. Prescreening with plasma p-tau181 reduced up to ≈50% of screening failures. Discussion: Clinical trials testing tau-targeting therapies may benefit from using fluid biomarkers to recruit individuals at risk of tau aggregation. © 2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association
  •  
9.
  • Rial, Alexis Moscoso, et al. (författare)
  • Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 78:4, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol.Plasma p-tau181 and NfL measured with single-molecule array technology.Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020.Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r=-0.24, P<.001; CImp: r=0.34, P<.001) and a prospective decrease in glucose metabolism (CU: r=-0.05, P=.48; CImp: r=-0.27, P<.001) and gray matter volume (CU: r=-0.19, P<.001; CImp: r=-0.31, P<.001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures.Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
  •  
10.
  • Rial, Alexis Moscoso, et al. (författare)
  • Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:1, s. 325-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n=1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n=864) also had measures of amyloid-β1-42 and p-tau181 levels in CSF, and another subset (n=298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy