SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asp Julia 1973 ) ;hsvcat:1"

Sökning: WFRF:(Asp Julia 1973 ) > Naturvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Böhmer, Jens, 1981, et al. (författare)
  • Absolute Quantification of Donor-Derived Cell-Free DNA in Pediatric and Adult Patients After Heart Transplantation: A Prospective Study.
  • 2023
  • Ingår i: Transplant international : official journal of the European Society for Organ Transplantation. - 0934-0874 .- 1432-2277. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • In this prospective study we investigated a cohort after heart transplantation with a novel PCR-based approach with focus on treated rejection. Blood samples were collected coincidentally to biopsies, and both absolute levels of dd-cfDNA and donor fraction were reported using digital PCR. 52 patients (11 children and 41 adults) were enrolled (NCT03477383, clinicaltrials.gov), and 557 plasma samples were analyzed. 13 treated rejection episodes >14days after transplantation were observed in 7 patients. Donor fraction showed a median of 0.08% in the cohort and was significantly elevated during rejection (median 0.19%, p < 0.0001), using a cut-off of 0.1%, the sensitivity/specificity were 92%/56% (AUC ROC-curve: 0.78). Absolute levels of dd-cfDNA showed a median of 8.8 copies/mL and were significantly elevated during rejection (median 23, p = 0.0001). Using a cut-off of 7.5 copies/mL, the sensitivity/specificity were 92%/43% for donor fraction (AUC ROC-curve: 0.75). The results support the feasibility of this approach in analyzing dd-cfDNA after heart transplantation. The obtained values are well aligned with results from other trials. The possibility to quantify absolute levels adds important value to the differentiation between ongoing graft damage and quiescent situations.
  •  
2.
  • Synnergren, Jane, et al. (författare)
  • Transcriptional sex and regional differences in paired human atrial and ventricular cardiac biopsies collected in vivo
  • 2020
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 52:2, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional studies of the human heart provide insight into physiological and pathophysiological mechanisms, essential for understanding the fundamental mechanisms of normal cardiac function and how they are altered by disease. To improve the understanding of why men and women may respond differently to the same therapeutic treatment it is crucial to learn more about sex-specific transcriptional differences. In this study the transcriptome of right atrium and left ventricle was compared across sex and regional location. Paired biopsies from five male and five female patients undergoing aortic valve replacement or coronary artery bypass grafting were included. Gene expression analysis identified 620 differentially expressed transcripts in atrial and ventricular tissue in men and 471 differentially expressed transcripts in women. In total 339 of these transcripts overlapped across sex but notably, 281 were unique in the male tissue and 162 in the female tissue, displaying marked sex differences in the transcriptional machinery. The transcriptional activity was significantly higher in atrias than in ventricles as 70% of the differentially expressed genes were upregulated in the atrial tissue. Furthermore, pathway- and functional annotation analyses performed on the differentially expressed genes showed enrichment for a more heterogeneous composition of biological processes in atrial compared with the ventricular tissue, and a dominance of differentially expressed genes associated with infection disease was observed. The results reported here provide increased insights about transcriptional differences between the cardiac atrium and ventricle but also reveal transcriptional differences in the human heart that can be attributed to sex.
  •  
3.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Notch and HES5 are regulated during human cartilage differentiation.
  • 2007
  • Ingår i: Cell and tissue research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 327:3, s. 539-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular mechanisms of cartilage differentiation are poorly understood. In a variety of tissues other than cartilage, members of the basic helix-loop-helix (bHLH) family of transcription factors have been demonstrated to play critical roles in differentiation. We have characterized the human bHLH gene HES5 and investigated its role during chondrogenesis. Blockage of the Notch signaling pathway with a gamma-secretase inhibitor has demonstrated that the human HES5 gene is a downstream marker of Notch signaling in articular chondrocytes. Markers for the Notch signaling pathway significantly decrease during cartilage differentiation in vitro. Cell proliferation assayed by using BrdU has revealed that blockage of Notch signaling is associated with significantly decreased proliferation. Northern blot and reverse transcription/polymerase chain reaction of a panel of various tissues have shown that HES5 is transcribed as a 5.4-kb mRNA that is ubiquitously expressed in diverse fetal and adult tissues. Articular cartilage from HES5(-/-) and wild-type mice has been analyzed by using various histological stains. No differences have been detected between the wild-type and HES5(-/-) mice. Our data thus indicate that the human HES5 gene is coupled to the Notch receptor family, that expression of Notch markers (including HES5) decreases during cartilage differentiation, and that the blockage of Notch signaling is associated with significantly decreased cell proliferation.
  •  
4.
  • Magnusson, Lisa U., 1975, et al. (författare)
  • High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 424:2, s. 327-330
  • Tidskriftsartikel (refereegranskat)abstract
    • A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1 alpha or (HIF-1 alpha) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1 alpha mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield important insights into the underlying association between hypoxia and inflammation in the human ischemic heart disease. (C) 2012 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy