SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asplund M.) ;pers:(Bessell M. S.)"

Sökning: WFRF:(Asplund M.) > Bessell M. S.

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Howes, L. M., et al. (författare)
  • Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 527:7579, s. 484-487
  • Tidskriftsartikel (refereegranskat)abstract
    • The first stars are predicted to have formed within 200 million years after the Big Bang(1), initiating the cosmic dawn. A true first star has not yet been discovered, although stars(2-4) with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time(5,6). The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years(7), leading to a dearth of early, metal-poor stars(8,9). Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
  •  
2.
  • Howes, Louise, et al. (författare)
  • The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 445:4, s. 4241-4246
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilizes SkyMapper photometry to pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72 <= [Fe/H] <= -2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [alpha/Fe] ratios.
  •  
3.
  • Cordoni, G., et al. (författare)
  • Exploring the Galaxy's halo and very metal-weak thick disc with SkyMapper and Gaia DR2
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:2, s. 2539-2561
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of -6.5 <= [Fe/H] <= -2.05 dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of [Fe/H] = - 3.31 and - 3.74, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that similar to 21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Z(max)| <= 3 kpc. Of particular interest is a subsample (similar to 11 per cent of the total) of low |Z(max)| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = -4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Z(max)|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Z(max)|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (similar to 4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted.
  •  
4.
  • De Silva, G. M., et al. (författare)
  • Chemical homogeneity in collinder 261 and implications for chemical tagging
  • 2007
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 133:3, s. 1161-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from the Very Large Telescope UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr, and Ba. We find that the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However, most alpha- and s-process elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, the Hyades, and the HR 1614 moving group to examine the uniqueness of the individual cluster abundance patterns, i.e., chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.
  •  
5.
  • Da Costa, G. S., et al. (författare)
  • The SkyMapper DR1.1 search for extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 489:4, s. 5900-5918
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R approximate to 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to -2.0, 41 per cent have [Fe/H] <= -2.75 and only approximately seven per cent have [Fe/H] > -2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < -4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < -4), the stars observed spectroscopically are dominated by a 'carbon-normal' population with [C/Fe](1D, LTE) <= +1 dex. Consideration of the A(C)(1D, LTE) versus [Fe/H](1D, LTE) diagram suggests that the current selection process is strongly biased against stars with A(C)(1D, LTE) > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)(1D, LTE) < 7.3 and [C/Fe](1D, LTE) > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Delta(Log N)/Delta[Fe/H] = 1.5 +/- 0.1 dex per dex for -4.0 <= [Fe/H] <= -2.75, but appears to drop abruptly at [Fe/H] approximate to -4.2, in line with previous studies.
  •  
6.
  • Marino, A. F., et al. (författare)
  • Keck HIRES spectroscopy of SkyMapper commissioning survey candidate extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 485:4, s. 5153-5167
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the analysis of high-resolution spectra obtained with the Keck HIRES spectrograph for a sample of 17 candidate extremely metal-poor (EMP) stars originally selected from commissioning data obtained with the SkyMapper telescope. Fourteen of the stars have not been observed previously at high dispersion. Three have [Fe/H] <= -3.0, while the remainder, with two more metal-rich exceptions, have -3.0 <= [Fe/H] <= -2.0 dex. Apart from Fe, we also derive abundances for the elements C, N, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, and Zn, and for n-capture elements Sr, Ba, and Eu. None of the current sample of stars is found to be carbon-rich. In general, our chemical abundances follow previous trends found in the literature, although we note that two of the most metal-poor stars show very low [Ba/Fe] (similar to-1.7) coupled with low [Sr/Ba] (similar to-0.3). Such stars are relatively rare in the Galactic halo. One further star, and possibly two others, meet the criteria for classification as a r-I star. This study, together with that of Jacobson et al. (2015), completes the outcomes of the SkyMapper commissioning data survey for EMP stars.
  •  
7.
  • Nordlander, T., et al. (författare)
  • The lowest detected stellar Fe abundance : the halo star SMSS J160540.18-144323.1
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 488:1, s. L109-L113
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of SMSS J160540.18-144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure [Fe/H] = -6.2 +/- 0.2 (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, [C/Fe] = 3.9 +/- 0.2, while other abundances are compatible with an alpha-enhanced solar-like pattern with [Ca/Fe] = 0.4 +/- 0.2, [Mg/Fe] = 0.6 +/- 0.2, [Ti/Fe] = 0.8 +/- 0.2, and no significant s- or r-process enrichment, [Sr/Fe] < 0.2 and [Ba/Fe] < 1.0 (3 sigma limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about 10 M circle dot imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly 20 M circle dot are incompatible with the observed abundance pattern.
  •  
8.
  • Norris, J. E., et al. (författare)
  • The most metal-poor stars. I. Discovery, data, and atmospheric parameters
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 25-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of 34 stars in the Hamburg/ESO Survey for metal-poor stars and the Sloan Digital Sky Survey that have [Fe/H] ≲ -3.0. Their median and minimum abundances are [Fe/H] = -3.1 and -4.1, respectively, while 10 stars have [Fe/H] < -3.5. High-resolution, high signal-to-noise spectroscopic data - equivalent widths and radial velocities - are presented for these stars, together with an additional four objects previously reported or currently being investigated elsewhere. We have determined the atmospheric parameters, effective temperature (T eff), and surface gravity (log g), which are critical in the determination of the chemical abundances and the evolutionary status of these stars. Three techniques were used to derive these parameters. Spectrophotometric fits to model atmosphere fluxes were used to derive T eff, log g, and an estimate of E(B - V); Hα, Hβ, and Hγ profile fitting to model atmosphere results provided the second determination of T eff and log g; and finally, we used an empirical T eff-calibrated Hδ index, for the third, independent T eff determination. The three values of T eff are in good agreement, although the profile fitting may yield systematically cooler T eff values, by ∼100 K. This collective data set will be analyzed in future papers in the present series to utilize the most metal-poor stars as probes of conditions in the early universe.
  •  
9.
  • Norris, J. E., et al. (författare)
  • The most metal-poor stars. IV. the two populations with [Fe/H] ≲ -3.0
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 28-
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the carbon-normal and carbon-rich populations of Galactic halo stars having [Fe/H] ≲ -3.0, utilizing chemical abundances from high-resolution, high signal-to-noise model-atmosphere analyses. The C-rich population represents ∼28% of stars below [Fe/H] = -3.1, with the present C-rich sample comprising 16 CEMP-no stars, and two others with [Fe/H] ∼ -5.5 and uncertain classification. The population is O-rich ([O/Fe] ≳ +1.5); the light elements Na, Mg, and Al are enhanced relative to Fe in half the sample; and for Z > 20 (Ca) there is little evidence for enhancements relative to solar values. These results are best explained in terms of the admixing and processing of material from H-burning and He-burning regions as achieved by nucleosynthesis in zero-heavy-element models in the literature of "mixing and fallback" supernovae (SNe); of rotating, massive, and intermediate-mass stars; and of Type II SNe with relativistic jets. The available (limited) radial velocities offer little support for the C-rich stars with [Fe/H] < -3.1 being binary. More data are required before one could conclude that binarity is key to an understanding of this population. We suggest that the C-rich and C-normal populations result from two different gas cooling channels in the very early universe of material that formed the progenitors of the two populations. The first was cooling by fine-structure line transitions of C II and O I (to form the C-rich population); the second, while not well defined (perhaps dust-induced cooling?), led to the C-normal group. In this scenario, the C-rich population contains the oldest stars currently observed.
  •  
10.
  • Norris, John E., et al. (författare)
  • The oxygen abundance of the ultra-metal-poor star HE 0557-4840
  • 2012
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 753:2, s. 150-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a high-resolution ultraviolet (UV) spectrum of the ultra-metal-poor (UMP) carbon-enhanced red giant HE 0557-4840 (T-eff/log g/[Fe/H] = 4900/2.2/-4.8). Combining these data with earlier observations, the radial velocity is 212.0 +/- 0.4 km s(-1), with no evidence of variability during 2006 February to 2007 December. One-dimensional (1D) LTE model-atmosphere analysis of UV Fe and CH lines confirms the iron and carbon abundances obtained previously ([Fe/H] = -4.8 and [C/Fe](1D) = +1.7), and places a more stringent limit on nitrogen abundance of [N/Fe](1D) < +1.0. Analysis of the UV OH lines yields [O/Fe](1D) = +2.3 +/- 0.4. When corrections are made for three-dimensional (3D) effects we obtain [C/Fe](3D) = +1.1, [N/Fe](3D) < +0.1, and [O/Fe](3D) = +1.4. Comparison of the abundances of HE 0557-4840 with those of supernova models of Nomoto et al. and Joggerst et al. suggests that none is able to explain fully the observed abundance pattern. For HE 0557-4840, the Frebel et al. transition discriminant D-trans(= log(10([C/H]) + 0.3 x 10([O/H])) = -3.4 +/- 0.2, consistent with fine-structure transitions of C II and O I being a major cooling mechanism of star-forming regions at the earliest times. Of the four stars known to have [Fe/H] less than or similar to -4.3, three are strongly carbon and oxygen enhanced. If the suggestion by Caffau et al. that SDSS J102915+172927 ([Fe/H] = -4.7) does not belong to the class of C-rich, O-rich, UMP stars is supported by future similar discoveries, one will need to consider multiple channels for the production of stars having [Fe/H] less than or similar to -4.3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy