SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asplund M.) ;pers:(Feltzing S.)"

Sökning: WFRF:(Asplund M.) > Feltzing S.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Bensby, T., et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed elemental abundance study of 90 F and G dwarf, turn-off, and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Zn, Y and Ba) have been determined. Four main findings are presented: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, + 0.12, + 0.41; (2) a highfraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35% are younger than 8 Gyr, and for [Fe/H] ≲-0.5 most stars are 10 Gyr or older; (3) several episodes of significant star formation in the bulge has been identified: 3, 6, 8, and 11 Gyr ago; (4) tentatively the "knee" in the α-element abundance trends of the sub-solar metallicity bulge is located at a slightly higher [Fe/H] than in the local thick disk. These findings show that the Galactic bulge has complex age and abundance properties that appear to be tightly connected to the main Galactic stellar populations. In particular, the peaks in the metallicity distribution, the star formation episodes, and the abundance trends, show similarities with the properties of the Galactic thin and thick disks. At the same time, the star formation rate appears to have been slightly faster in the bulge than in the local thick disk, which most likely is an indication of the denser stellar environment closer to the Galactic centre. There are also additional components not seen outside the bulge region, and that most likely can be associated with the Galactic bar. Our results strengthen the observational evidence that support the idea of a secular origin for the Galactic bulge, formed out of the other main Galactic stellar populations present in the central regions of our Galaxy. Additionally, our analysis of this enlarged sample suggests that the (V-I)0 colour of the bulge red clump should be revised to 1.09.
  •  
3.
  • Pancino, E., et al. (författare)
  • The Gaia-ESO Survey : Calibration strategy
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 598
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average off sets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
  •  
4.
  • Adibekyan, V., et al. (författare)
  • Sun-like stars unlike the Sun : Clues for chemical anomalies of cool stars
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:4, s. 442-452
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a summary of the splinter session Sun-like stars unlike the Sun that was held on June 9, 2016, as part of the Cool Stars 19 conference (Uppsala, Sweden), in which the main limitations (in the theory and observations) in the derivation of very precise stellar parameters and chemical abundances of Sun-like stars were discussed. The most important and most debated processes that can produce chemical peculiarities in solar-type stars were outlined and discussed. Finally, in an open discussion between all the participants, we tried to identify new pathways and prospects toward future solutions of the currently open questions.
  •  
5.
  • Bensby, T., et al. (författare)
  • The age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
  • 2017
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213. ; 13:S334, s. 86-89
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The four main findings about the age and abundance structure of the Milky Way bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, +0.12, +0.41; (2) a high fraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35 % are younger than 8 Gyr, (3) several episodes of significant star formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the 'knee' in the α-element abundance trends of the sub-solar metallicity bulge appears to be located at a slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local thick disk.
  •  
6.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey
  • 2012
  • Ingår i: The Messenger. - 0254-4423. ; 147, s. 25-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented.
  •  
7.
  • Heiter, Ulrike, et al. (författare)
  • Atomic data for the Gaia-ESO Survey
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Public Spectroscopic Survey in the years 2012 to 2019. The Gaia-ESO Survey is one among several current and future stellar spectroscopic surveys producing abundances for Milky-Way stars on an industrial scale.Aims. We present an unprecedented effort to create a homogeneous common line list, which was used by several abundance analysis groups using different radiative transfer codes to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available at the CDS.Methods. In general, experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by a hyperfine structure or isotopic splitting, a concerted effort has been made to collate the necessary data for the individual line components. Synthetic stellar spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. We also performed adetailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms.Results. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 to 685 nm and from 850 to 895 nm, we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen, we recommend data based on Anstee-Barklem-O'Mara theory, where possible. We recommend avoiding lines of neutral species for which these are not available. Theoretical broadening data by R.L. Kurucz should be used for ScII, TiII, and YII lines; additionally, for ionised rare-earth species, the Unsold approximation with an enhancement factor of 1.5 for the line width can be used.Conclusions. The line list has proven to be a useful tool for abundance determinations based on the spectra obtained within the Gaia-ESO Survey, as well as other spectroscopic projects. Accuracies below 0.2 dex are regularly achieved, where part of the uncertainties are due to differences in the employed analysis methods. Desirable improvements in atomic data were identified for a number of species, most importantly AlI, SI, and CrII, but also NaI, SiI, CaII, and NiI.
  •  
8.
  • Traven, G., et al. (författare)
  • The GALAH survey : multiple stars and our Galaxy: I. A comprehensive method for deriving properties of FGK binary stars?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. The advent of large-scale spectroscopic and photometric surveys allows us to obtain large samples of binaries that permit characterising their populations.Aims. We aim to obtain a large sample of double-lined spectroscopic binaries (SB2s) by analysis of spectra from the GALAH survey in combination with photometric and astrometric data. A combined analysis will provide stellar parameters of thousands of binary stars that can be combined to form statistical observables of a given population. We aim to produce a catalogue of well-characterised systems, which can in turn be compared to models of populations of binary stars, or to follow-up individual systems of interest.Methods. We obtained a list of candidate SB2 systems from a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. To compute parameters of the primary and secondary star, we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. We used a Markov chain Monte Carlo approach to sample the posterior distributions of the following model parameters for the two stars: T-eff[1,T-2], logg([1,2]), [Fe/H], V-r[1,V-2], v(mic[1,2]), v(broad[1,2]), R-[1,R-2], and E(B-V).Results. We present results for 12 760 binary stars detected as SB2s. We construct the statistical observables T-1/T-2, Delta V-r, and R-1/R-2, which demonstrate that our sample mostly consists of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. The majority of these binary stars is concentrated at the lower boundary of the Delta V-r distribution, and the R-1/R-2 ratio is mostly close to unity. The derived metallicity of our binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.Conclusions. Our sample of binary stars represents a large population of well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. The derived stellar properties and their distributions show trends that are expected for a population of close binary stars (a < 10 AU) detected through double lines in their spectra. Our detection technique allows us to probe binary systems with mass ratios 0.5 q <= 1.
  •  
9.
  • Bensby, T., et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : VII. Lithium
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium abundances are presented for 91 dwarf and subgiant stars in the Galactic bulge. The analysis is based on line synthesis of the 7Li line at 6707 Å in high-resolution spectra obtained during gravitational microlensing events, when the brightnesses of the targets were highly magnified. Our main finding is that bulge stars at sub-solar metallicities that are older than about eight billion years do not show any sign of Li production; that is, the Li trend with metallicity is flat or even slightly declining. This indicates that no lithium was produced during the first few billion years in the history of the bulge. This finding is essentially identical to what is seen for the (old) thick disk stars in the solar neighbourhood, and adds another piece of evidence for a tight connection between the metal-poor bulge and the Galactic thick disk. For the bulge stars younger than about eight billion years, the sample contains a group of stars at very high metallicities at [Fe/H] ≈ +0.4 that have lithium abundances in the range A(Li) = 2.6 - 2.8. In the solar neighbourhood the lithium abundances have been found to peak at A(Li) ≈ 3.3 at [Fe/H] ≈ +0.1 and then decrease by 0.4-0.5 dex when reaching [Fe/H] ≈ +0.4. The few bulge stars that we have at these metallicities seem to support this declining A(Li) trend. This could indeed support the recent claim that the low A(Li) abundances at the highest metallicities seen in the solar neighbourhood could be due to stars from the inner disk, or the bulge region, that have migrated to the solar neighbourhood.
  •  
10.
  • Bensby, T., et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : VIII. Carbon and oxygen
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Next to H and He, carbon is, together with oxygen, the most abundant element in the Universe and widely used when modelling the formation and evolution of galaxies and their stellar populations. For the Milky Way bulge, there are currently essentially no measurements of carbon in un-evolved stars, hampering our abilities to properly compare Galactic chemical evolution models to observational data for this still enigmatic stellar population. Aims. We aim to determine carbon abundances for our sample of 91 microlensed dwarf and subgiant stars in the Galactic bulge. Together with new determinations for oxygen this forms the first statistically significant sample of bulge stars that have C and O abundances measured, and for which the C abundances have not been altered by the nuclear burning processes internal to the stars. Methods. Our analysis is based on high-resolution spectra for a sample of 91 dwarf and subgiant stars that were obtained during microlensing events when the brightnesses of the stars were highly magnified. Carbon abundances were determined through spectral line synthesis of six C» I lines around 9100 Å, and oxygen abundances using the three O» I lines at about 7770 Å. One-dimensional (1D) MARCS model stellar atmospheres calculated under the assumption of local thermodynamic equilibrium (LTE) were used, and non-LTE corrections were applied when calculating the synthetic spectra for both C and O. Results. Carbon abundances was possible to determine for 70 of the 91 stars in the sample and oxygen abundances for 88 of the 91 stars in the sample. The [C/Fe] ratio evolves essentially in lockstep with [Fe/H], centred around solar values at all [Fe/H]. The [O/Fe]-[Fe/H] trend has an appearance very similar to that observed for other α-elements in the bulge, with the exception of a continued decrease in [O/Fe] at super-solar [Fe/H], where other α-elements tend to level out. When dividing the bulge sample into two sub-groups, one younger than 8 Gyr and one older than 8 Gyr, the stars in the two groups follow exactly the elemental abundance trends defined by the solar neighbourhood thin and thick disks, respectively. Comparisons with recent models of Galactic chemical evolution in the [C/O]-[O/H] plane show that the models that best match the data are the ones that have been calculated with the Galactic thin and thick disks in mind. Conclusions. We conclude that carbon, oxygen, and the combination of the two support the idea that the majority of the stars in the Galactic bulge have a secular origin; that is, they are formed from disk material. We cannot exclude that a fraction of stars in the bulge could be classified as a classical bulge population, but it would have to be small. More dedicated and advanced models of the inner region of the Milky Way are needed to make more detailed comparisons to the observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy