SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asplund M.) ;pers:(Melendez J.)"

Sökning: WFRF:(Asplund M.) > Melendez J.

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bensby, T., et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed elemental abundance study of 90 F and G dwarf, turn-off, and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Zn, Y and Ba) have been determined. Four main findings are presented: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, + 0.12, + 0.41; (2) a highfraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35% are younger than 8 Gyr, and for [Fe/H] ≲-0.5 most stars are 10 Gyr or older; (3) several episodes of significant star formation in the bulge has been identified: 3, 6, 8, and 11 Gyr ago; (4) tentatively the "knee" in the α-element abundance trends of the sub-solar metallicity bulge is located at a slightly higher [Fe/H] than in the local thick disk. These findings show that the Galactic bulge has complex age and abundance properties that appear to be tightly connected to the main Galactic stellar populations. In particular, the peaks in the metallicity distribution, the star formation episodes, and the abundance trends, show similarities with the properties of the Galactic thin and thick disks. At the same time, the star formation rate appears to have been slightly faster in the bulge than in the local thick disk, which most likely is an indication of the denser stellar environment closer to the Galactic centre. There are also additional components not seen outside the bulge region, and that most likely can be associated with the Galactic bar. Our results strengthen the observational evidence that support the idea of a secular origin for the Galactic bulge, formed out of the other main Galactic stellar populations present in the central regions of our Galaxy. Additionally, our analysis of this enlarged sample suggests that the (V-I)0 colour of the bulge red clump should be revised to 1.09.
  •  
2.
  • Melendez, J., et al. (författare)
  • The solar, exoplanet and cosmological lithium problems
  • 2010
  • Ingår i: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 328:1-2, s. 193-200
  • Tidskriftsartikel (refereegranskat)abstract
    • We review three Li problems. First, the Li problem in the Sun, for which some previous studies have argued that it may be Li-poor compared to other Suns. Second, we discuss the Li problem in planet hosting stars, which are claimed to be Li-poor when compared to field stars. Third, we discuss the cosmological Li problem, i.e. the discrepancy between the Li abundance in metal-poor stars (Spite plateau stars) and the predictions from standard Big Bang Nucleosynthesis. In all three cases we find that the "problems" are naturally explained by non-standard mixing in stars.
  •  
3.
  •  
4.
  • Bensby, T., et al. (författare)
  • The age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
  • 2017
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213. ; 13:S334, s. 86-89
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The four main findings about the age and abundance structure of the Milky Way bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, +0.12, +0.41; (2) a high fraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35 % are younger than 8 Gyr, (3) several episodes of significant star formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the 'knee' in the α-element abundance trends of the sub-solar metallicity bulge appears to be located at a slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local thick disk.
  •  
5.
  • Liu, F., et al. (författare)
  • The chemical compositions of solar twins in the open cluster M67
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 463:1, s. 696-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of theMilkyWay.M67 is particularly interesting given its solar metallicity and age as well as being a dense cluster environment.We conducted a strictly line-by-line differential chemical abundance analysis of two solar twins in M67: M67-1194 and M67-1315. Stellar atmospheric parameters and elemental abundances were obtained with high precision using Keck/High Resolution Echelle Spectrometer spectra. M67-1194 is essentially identical to the Sun in terms of its stellar parameters. M67-1315 is warmer than M67-1194 by ≈150 K as well as slightly more metal-poor than M67-1194 by ≈0.05 dex. M67-1194 is also found to have identical chemical composition to the Sun, confirming its solar-twin nature. The abundance ratios [X/Fe] of M67-1315 are similar to the solar abundances for elements with atomic number Z ≤ 30, while most neutron-capture elements are enriched by ≈0.05 dex, which might be attributed to enrichment from a mixture of asymptotic giant branch ejecta and r-process material. The distinct chemical abundances for the neutron-capture elements in M67-1315 and the lower metallicity of this star compared to M67-1194, indicate that the stars in M67 are likely not chemically homogeneous. This poses a challenge for the concept of chemical tagging since it is based on the assumption of stars forming in the same star-forming aggregate.
  •  
6.
  • Liu, F., et al. (författare)
  • The detailed chemical composition of the terrestrial planet host Kepler-10
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:3, s. 2636-2646
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and 14 of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins were obtained with very high precision using a strictly differential analysis of high quality Canada-France-Hawaii Telescope, Hobby-Eberly Telescope and Magellan spectra. When compared to the majority of thick disc twins, Kepler-10 shows a depletion in the refractory elements relative to the volatile elements, which could be due to the formation of terrestrial planets in the Kepler-10 system. The average abundance pattern corresponds to similar to 13 Earth masses, while the two known planets in Kepler-10 system have a combined similar to 20 Earth masses. For two of the eight thick disc twins, however, no depletion patterns are found. Although our results demonstrate that several factors [e.g. planet signature, stellar age, stellar birth location and Galactic chemical evolution (GCE)] could lead to or affect abundance trends with condensation temperature, we find that the trends give further support for the planetary signature hypothesis.
  •  
7.
  • Ryde, Nils, et al. (författare)
  • Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 509:1, s. A20-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No "cosmic scatter" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.
  •  
8.
  • Bensby, Thomas, et al. (författare)
  • Chemical evolution of the galactic bulge as traced by microlensed dwarf and subgiant stars. II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc
  • 2010
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 512
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars. Aims. We aim to resolve the apparent discrepancy between Bulge metallicity distributions derived from microlensed dwarf stars and giant stars. Additionally, we aim to put observational constraints on the elemental abundance trends and chemical evolution of the Bulge. Methods. We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. The analysis method is the same as for a large sample of F and G dwarf stars in the Solar neighbourhood, enabling a fully differential comparison between the Bulge and the local stellar populations in the Galactic disc. Results. We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H] = -0.72 to + 0.54, and an average metallicity of <[Fe/H]> = -0.08 +/- 0.47, close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H]<0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.
  •  
9.
  • Bensby, Thomas, et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S
  • 2010
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the Li-7 resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.
  •  
10.
  • Bensby, Thomas, et al. (författare)
  • Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars IV. Two bulge populations
  • 2011
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the Li-7 line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy