SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asplund M.) ;pers:(Nordlander T.)"

Sökning: WFRF:(Asplund M.) > Nordlander T.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buder, S., et al. (författare)
  • The GALAH survey : An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • The overlap between the spectroscopic Galactic Archaeology with HERMES (GALAH) survey and Gaia provides a high-dimensional chemodynamical space of unprecedented size. We present a first analysis of a subset of this overlap, of 7066 dwarf, turn-off, and subgiant stars. These stars have spectra from the GALAH survey and high parallax precision from the Gaia DR1 Tycho-Gaia Astrometric Solution. We investigate correlations between chemical compositions, ages, and kinematics for this sample. Stellar parameters and elemental abundances are derived from the GALAH spectra with the spectral synthesis code SPECTROSCOPY MADE EASY. We determine kinematics and dynamics, including action angles, from the Gaia astrometry and GALAH radial velocities. Stellar masses and ages are determined with Bayesian isochrone matching, using our derived stellar parameters and absolute magnitudes. We report measurements of Li, C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, as well as Ba and we note that we have employed non-LTE calculations for Li, O, Al, and Fe. We show that the use of astrometric and photometric data improves the accuracy of the derived spectroscopic parameters, especially log g. Focusing our investigation on the correlations between stellar age, iron abundance [Fe/H], and mean alpha-enhancement [alpha/Fe] of the magnitude-selected sample, we recover the result that stars of the high-a sequence are typically older than stars in the low-a sequence, the latter spanning iron abundances of -0.7 < [Fe/H] < +0.5. While these two sequences become indistinguishable in [alpha/Fe] vs. [Fe/H] at the metal-rich regime, we find that age can be used to separate stars from the extended high-a and the low-a sequence even in this regime. When dissecting the sample by stellar age, we find that the old stars (>8 Gyr) have lower angular momenta L-z than the Sun, which implies that they are on eccentric orbits and originate from the inner disc. Contrary to some previous smaller scale studies we find a continuous evolution in the high-alpha-sequence up to super-solar [Fe/H] rather than a gap, which has been interpreted as a separate "high-alpha metal-rich" population. Stars in our sample that are younger than 10 Gyr, are mainly found on the low alpha-sequence and show a gradient in L-z from low [Fe/H] > (L-z > L-z,L-circle dot) towards higher [Fe/H] (L-z < L-z,L-circle dot), which implies that the stars at the ends of this sequence are likely not originating from the close solar vicinity.
  •  
2.
  • Spina, L., et al. (författare)
  • The GALAH survey : tracing the Galactic disc with open clusters
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3279-3296
  • Tidskriftsartikel (refereegranskat)abstract
    • Open clusters are unique tracers of the history of our own Galaxy's disc. According to our membership analysis based on Gala astrometry, out of the 226 potential clusters falling in the footprint of the GALactic Archaeology with HERMES (GALAH) survey or the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, we find that 205 have secure members that were observed by at least one of the surveys. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disc of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is -0.076 +/- 0.009 dex kpc(-1), which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the (Fe/Hi-guiding radius (r(guid)) plane is -0.073 +/- 0.008 dex kpc(-1). We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disc differently than field stars. In particular, at the given radius, open clusters show an age-metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]-r(guid)-age space, which are important to understand production rates of different elements as a function of space and time.
  •  
3.
  • Bergemann, M., et al. (författare)
  • The Gaia-ESO Survey : radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565, s. A89-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < vertical bar Z vertical bar < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
  •  
4.
  • Amarsi, Anish, et al. (författare)
  • The GALAH Survey : non-LTE departure coefficients for large spectroscopic surveys
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 <= T-eff/K <= 8000, - 0.5 <= log g/cm s(-2) <= 5.5, and - 5 <= [Fe/H] <= 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys.
  •  
5.
  • Cordoni, G., et al. (författare)
  • Exploring the Galaxy's halo and very metal-weak thick disc with SkyMapper and Gaia DR2
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:2, s. 2539-2561
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of -6.5 <= [Fe/H] <= -2.05 dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of [Fe/H] = - 3.31 and - 3.74, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that similar to 21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Z(max)| <= 3 kpc. Of particular interest is a subsample (similar to 11 per cent of the total) of low |Z(max)| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = -4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Z(max)|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Z(max)|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (similar to 4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted.
  •  
6.
  • Karovicova, I., et al. (författare)
  • Accurate effective temperatures of the metal-poor benchmark stars HD140283, HD122563, and HD103095 from CHARA interferometry
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 475:1, s. L81-L85
  • Tidskriftsartikel (refereegranskat)abstract
    • Large stellar surveys of the MilkyWay require validation with reference to a set of 'benchmark' stars whose fundamental properties are well determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective temperatures has called the reliability of the temperature scale into question. We present new interferometric measurements of three metal-poor benchmark stars, HD140283, HD122563, and HD103095, from which we determine their effective temperatures. The angular sizes of all the stars were determined from observations with the PAVO beam combiner at visible wavelengths at the CHARA array, with additional observations of HD103095 made with the VEGA instrument, also at the CHARA array. Together with photometrically derived bolometric fluxes, the angular diameters give a direct measurement of the effective temperature. For HD140283, we find theta(LD) = 0.324 +/- 0.005 mas, T-eff = 5787 +/- 48 K; for HD122563,theta(LD) = 0.926 +/- 0.011 mas, T-eff = 4636 +/- 37 K; and for HD103095,theta(LD) = 0.595 +/- 0.007 mas, T-eff = 5140 +/- 49 K. Our temperatures for HD140283 and HD103095 are hotter than the previous interferometric measurements by 253 and 322 K, respectively. We find good agreement between our temperatures and recent spectroscopic and photometric estimates. We conclude some previous interferometric measurements have been affected by systematic uncertainties larger than their quoted errors.
  •  
7.
  • Amarsi, A. M., et al. (författare)
  • Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen Balmer lines are commonly used as spectroscopic effective temperature diagnostics of late-type stars. However, reliable inferences require accurate model spectra, and the absolute accuracy of classical methods that are based on one-dimensional (1D) hydrostatic model atmospheres and local thermodynamic equilibrium (LTE) is still unclear. To investigate this, we carry out 3D non-LTE calculations for the Balmer lines, performed, for the first time, over an extensive grid of 3D hydrodynamic STAGGER model atmospheres. For H alpha, H beta, and H gamma we find significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer wings tend to be stronger in 3D models, particularly for H gamma, while the inner wings can be weaker in 3D models, particularly for H alpha. For H alpha, we also find significant 3D LTE versus 3D non-LTE differences (non-LTE effects): in warmer stars (T-eff approximate to 6500 K) the inner wings tend to be weaker in non-LTE models, while at lower effective temperatures (T-eff approximate to 4500 K) the inner wings can be stronger in non-LTE models; the non-LTE effects are more severe at lower metallicities. We test our 3D non-LTE models against observations of well-studied benchmark stars. For the Sun, we infer concordant effective temperatures from H alpha, H beta, and H gamma; however the value is too low by around 50 K which could signal residual modelling shortcomings. For other benchmark stars, our 3D non-LTE models generally reproduce the effective temperatures to within 1 sigma uncertainties. For H alpha, the absolute 3D effects and non-LTE effects can separately reach around 100 K, in terms of inferred effective temperatures. For metal-poor turn-off stars, 1D LTE models of H alpha can underestimate effective temperatures by around 150 K. Our 3D non-LTE model spectra are publicly available, and can be used for more reliable spectroscopic effective temperature determinations.
  •  
8.
  • Da Costa, G. S., et al. (författare)
  • The SkyMapper DR1.1 search for extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 489:4, s. 5900-5918
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R approximate to 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to -2.0, 41 per cent have [Fe/H] <= -2.75 and only approximately seven per cent have [Fe/H] > -2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < -4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < -4), the stars observed spectroscopically are dominated by a 'carbon-normal' population with [C/Fe](1D, LTE) <= +1 dex. Consideration of the A(C)(1D, LTE) versus [Fe/H](1D, LTE) diagram suggests that the current selection process is strongly biased against stars with A(C)(1D, LTE) > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)(1D, LTE) < 7.3 and [C/Fe](1D, LTE) > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Delta(Log N)/Delta[Fe/H] = 1.5 +/- 0.1 dex per dex for -4.0 <= [Fe/H] <= -2.75, but appears to drop abruptly at [Fe/H] approximate to -4.2, in line with previous studies.
  •  
9.
  • Marino, A. F., et al. (författare)
  • Keck HIRES spectroscopy of SkyMapper commissioning survey candidate extremely metal-poor stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 485:4, s. 5153-5167
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the analysis of high-resolution spectra obtained with the Keck HIRES spectrograph for a sample of 17 candidate extremely metal-poor (EMP) stars originally selected from commissioning data obtained with the SkyMapper telescope. Fourteen of the stars have not been observed previously at high dispersion. Three have [Fe/H] <= -3.0, while the remainder, with two more metal-rich exceptions, have -3.0 <= [Fe/H] <= -2.0 dex. Apart from Fe, we also derive abundances for the elements C, N, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, and Zn, and for n-capture elements Sr, Ba, and Eu. None of the current sample of stars is found to be carbon-rich. In general, our chemical abundances follow previous trends found in the literature, although we note that two of the most metal-poor stars show very low [Ba/Fe] (similar to-1.7) coupled with low [Sr/Ba] (similar to-0.3). Such stars are relatively rare in the Galactic halo. One further star, and possibly two others, meet the criteria for classification as a r-I star. This study, together with that of Jacobson et al. (2015), completes the outcomes of the SkyMapper commissioning data survey for EMP stars.
  •  
10.
  • Nordlander, T., et al. (författare)
  • The lowest detected stellar Fe abundance : the halo star SMSS J160540.18-144323.1
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 488:1, s. L109-L113
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of SMSS J160540.18-144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure [Fe/H] = -6.2 +/- 0.2 (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, [C/Fe] = 3.9 +/- 0.2, while other abundances are compatible with an alpha-enhanced solar-like pattern with [Ca/Fe] = 0.4 +/- 0.2, [Mg/Fe] = 0.6 +/- 0.2, [Ti/Fe] = 0.8 +/- 0.2, and no significant s- or r-process enrichment, [Sr/Fe] < 0.2 and [Ba/Fe] < 1.0 (3 sigma limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about 10 M circle dot imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly 20 M circle dot are incompatible with the observed abundance pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy