SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Audibert G) "

Sökning: WFRF:(Audibert G)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Audibert, A., et al. (författare)
  • ALMA captures feeding and feedback from the active galactic nucleus in NGC 613
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • We report ALMA observations of CO(3-2) emission in the Seyfert/nuclear starburst galaxy NGC 613, at a spatial resolution of 17 pc, as part of our NUclei of GAlaxies (NUGA) sample. Our aim is to investigate the morphology and dynamics of the gas inside the central kiloparsec, and to probe nuclear fueling and feedback phenomena. The morphology of CO(3-2) line emission reveals a two-arm trailing nuclear spiral at r≤ 100 pc and a circumnuclear ring at a radius of ∼350 pc that is coincident with the star-forming ring seen in the optical images. Also, we find evidence for a filamentary structure connecting the ring and the nuclear spiral. The ring reveals two breaks into two winding spiral arms corresponding to the dust lanes in the optical images. The molecular gas in the galaxy disk is in a remarkably regular rotation, however the kinematics in the nuclear region are very skewed. The nuclear spectrum of CO and dense gas tracers HCN(4-3), HCO+(4-3), and CS(7-6) show broad wings up to ±300 km s-1, associated with a molecular outflow emanating from the nucleus (r ∼ 25 pc). We derive a molecular outflow mass Mout=2 × 106 M⊙ and a mass outflow rate of M out = 27 M⊙ yr-1. The molecular outflow energetics exceed the values predicted by AGN feedback models: the kinetic power of the outflow corresponds to PK, out=20%LAGN and the momentum rate is M outv ∼400LAGN/c. The outflow is mainly boosted by the AGN through entrainment by the radio jet, but given the weak nuclear activity of NGC 613, we might be witnessing a fossil outflow resulting from a previously strong AGN that has now faded. Furthermore, the nuclear trailing spiral observed in CO emission is inside the inner Lindblad resonance ring of the bar. We compute the gravitational torques exerted in the gas to estimate the efficiency of the angular momentum exchange. The gravity torques are negative from 25 to 100 pc and the gas loses its angular momentum in a rotation period, providing evidence for a highly efficient inflow towards the center. This phenomenon shows that the massive central black hole has significant dynamical influence on the gas, triggering the inflowing of molecular gas to feed the black hole.
  •  
6.
  • Audibert, A., et al. (författare)
  • Black hole feeding and star formation in NGC 1808
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Atacama Large Millimeter Array (ALMA) observations of CO(3-2) emission in the Seyfert2/starburst galaxy NGC1808, at a spatial resolution of 4 pc. Our aim is to investigate the morphology and dynamics of the gas inside the central 0.5 kpc and to probe the nuclear feeding and feedback phenomena. We discovered a nuclear spiral of radius 100 = 45 pc. Within it, we found a decoupled circumnuclear disk or molecular torus of a radius of 0:1300 = 6 pc. The HCN(4-3) and HCO+(4-3) and CS(7-6) dense gas line tracers were simultaneously mapped and detected in the nuclear spiral and they present the same misalignment in the molecular torus. At the nucleus, the HCN/HCO+ and HCN/CS ratios indicate the presence of an active galactic nucleus (AGN). The molecular gas shows regular rotation, within a radius of 400 pc, except for the misaligned disk inside the nuclear spiral arms. The computations of the torques exerted on the gas by the barred stellar potential reveal that the gas within a radius of 100 pc is feeding the nucleus on a timescale of five rotations or on an average timescale of 60 Myr. Some non-circular motions are observed towards the center, corresponding to the nuclear spiral arms. We cannot rule out that small extra kinematic perturbations could be interpreted as a weak outflow attributed to AGN feedback. The molecular outflow detected at 250 pc in the NE direction is likely due to supernovae feedback and it is connected to the kpc-scale superwind.
  •  
7.
  • Combes, F., et al. (författare)
  • ALMA observations of molecular tori around massive black holes
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(3-2) emission in a sample of seven Seyfert/LINER galaxies at the unprecedented spatial resolution of 0 .″ 1 = 4-8 pc. Our aim is to explore the close environment of active galactic nuclei (AGN), and the dynamical structures leading to their fueling, through the morphology and kinematics of the gas inside the sphere of influence of the black hole. The selected galaxies host low-luminosity AGN and have a wide range of activity types (Seyferts 1 to 2, LINERs), and barred or ringed morphologies. The observed maps reveal the existence of circumnuclear disk structures, defined by their morphology and decoupled kinematics, in most of the sample. We call these structures molecular tori, even though they often appear as disks without holes in the center. They have varying orientations along the line of sight, unaligned with the host galaxy orientation. The radius of the tori ranges from 6 to 27 pc, and their mass from 0.7 × 10 7 to 3.9 × 10 7 M · . The most edge-on orientations of the torus correspond to obscured Seyferts. In only one case (NGC 1365), the AGN is centered on the central gas hole of the torus. On a larger scale, the gas is always piled up in a few resonant rings 100 pc in scale that play the role of a reservoir to fuel the nucleus. In some cases, a trailing spiral is observed inside the ring, providing evidence for feeding processes. More frequently, the torus and the AGN are slightly off-centered with respect to the bar-resonant ring position, implying that the black hole is wandering by a few 10 pc amplitude around the center of mass of the galaxy. Our spatial resolution allows us to measure gas velocities inside the sphere of influence of the central black holes. By fitting the observations with different simulated cubes, varying the torus inclination and the black hole mass, it is possible to estimate the mass of the central black hole, which is in general difficult for such late-type galaxies, with only a pseudo-bulge. In some cases, AGN feedback is revealed through a molecular outflow, which will be studied in detail in a subsequent article.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy