SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Augereau Jean Charles) ;pers:(Schneider Glenn)"

Sökning: WFRF:(Augereau Jean Charles) > Schneider Glenn

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boccaletti, Anthony, et al. (författare)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
2.
  • Lawson, Kellen, et al. (författare)
  • SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new, near-infrared (1.1-2.4 mu m) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). The SCExAO/CHARIS resolves the disk down to rho similar to 02 (r(proj) similar to 10 au), a factor of similar to 3-5 smaller than previous recent studies. We derive a disk position angle of PA similar to 2794-2805 and an inclination ofi similar to 853-86.2. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two-ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one- and two-ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view (rho less than or similar to 1 ''). The disk's asymmetry, well evidenced at larger separations, is also recovered; the west side of the disk appears, on average, around 0.4 mag brighter across the CHARIS bandpass between 025 and 1 ''. Comparing Space Telescope Imaging Spectrograph (STIS) 50CCD optical photometry (2000-10500 A) with CHARIS near-infrared photometry, we find a red (STIS/50CCD-CHARIS broadband) color for both sides of the disk throughout the 04-1 '' region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to similar to 2 ''. Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions and discuss possible mechanisms for the observed inner disk flux asymmetry and color.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy