SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Awad Ali Ismail) "

Sökning: WFRF:(Awad Ali Ismail)

  • Resultat 1-10 av 65
  • [1]234567Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ali, Bako, et al. (författare)
  • Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes
  • 2018
  • Ingår i: Sensors. - MDPI. - 1424-8220 .- 1424-8220. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.</p>
  •  
3.
  • Abd-Ellah, Mahmoud Khaled, et al. (författare)
  • A Review on Brain Tumor Diagnosis from MRI Images : Practical Implications, Key Achievements, and Lessons Learned
  • 2019
  • Ingår i: Magnetic Resonance Imaging. - Elsevier. - 0730-725X .- 1873-5894. ; 61, s. 300-318
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The successful early diagnosis of brain tumors plays a major role in improving the treatment outcomes and thus improving patient survival. Manually evaluating the numerous magnetic resonance imaging (MRI) images produced routinely in the clinic is a difficult process. Thus, there is a crucial need for computer-aided methods with better accuracy for early tumor diagnosis. Computer-aided brain tumor diagnosis from MRI images consists of tumor detection, segmentation, and classification processes. Over the past few years, many studies have focused on traditional or classical machine learning techniques for brain tumor diagnosis. Recently, interest has developed in using deep learning techniques for diagnosing brain tumors with better accuracy and robustness. This study presents a comprehensive review of traditional machine learning techniques and evolving deep learning techniques for brain tumor diagnosis. This review paper identifies the key achievements reflected in the performance measurement metrics of the applied algorithms in the three diagnosis processes. In addition, this study discusses the key findings and draws attention to the lessons learned as a roadmap for future research.</p>
  •  
4.
  • Abd-Ellah, Mahmoud Khaled, et al. (författare)
  • Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine
  • 2016
  • Ingår i: Building Sustainable Health Ecosystems : 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings. - Springer International Publishing. - 978-3-319-44671-4 - 978-3-319-44672-1 ; s. 151-160
  • Konferensbidrag (refereegranskat)abstract
    • <p>The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.</p>
  •  
5.
  •  
6.
  • Abd-Ellah, Mahmoud Khaled, et al. (författare)
  • Design and implementation of a computer-aided diagnosis system for brain tumor classification
  • 2017
  • Ingår i: 2016 28th International Conference on Microelectronics (ICM). - 978-1-5090-5721-4 ; s. 73-76
  • Konferensbidrag (refereegranskat)abstract
    • <p>Computer-aided diagnosis (CAD) systems have become very important for the medical diagnosis of brain tumors. The systems improve the diagnostic accuracy and reduce the required time. In this paper, a two-stage CAD system has been developed for automatic detection and classification of brain tumor through magnetic resonance images (MRIs). In the first stage, the system classifies brain tumor MRI into normal and abnormal images. In the second stage, the type of tumor is classified as benign (Noncancerous) or malignant (Cancerous) from the abnormal MRIs. The proposed CAD ensembles the following computational methods: MRI image segmentation by K-means clustering, feature extraction using discrete wavelet transform (DWT), feature reduction by applying principal component analysis (PCA). The two-stage classification has been conducted using a support vector machine (SVM). Performance evaluation of the proposed CAD has achieved promising results using a non-standard MRIs database.</p>
  •  
7.
  • Abd-Ellah, Mahmoud Khaled, et al. (författare)
  • Parallel Deep CNN Structure for Glioma Detection and Classification via Brain MRI Images
  • 2019
  • Ingår i: IEEE-ICM 2019 CAIRO-EGYPT : The 31st International Conference on Microelectronics. - IEEE. ; s. 304-307
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • <p>Although most brain tumor diagnosis studies have focused on tumor segmentation and localization operations, few studies have focused on tumor detection as a time- and effort-saving process. This study introduces a new network structure for accurate glioma tumor detection and classification using two parallel deep convolutional neural networks (PDCNNs). The proposed structure is designed to identify the presence and absence of a brain tumor in MRI images and classify the type of tumor images as high-grade gliomas (HGGs, i.e., glioblastomas) or low-grade gliomas (LGGs). The introduced PDCNNs structure takes advantage of both global and local features extracted from the two parallel stages. The proposed structure is not only accurate but also efficient, as the convolutional layers are more accurate because they learn spatial features, and they are efficient in the testing phase since they reduce the number of weights, which reduces the memory usage and runtime. Simulation experiments were accomplished using an MRI dataset extracted from the BraTS 2017 database. The obtained results show that the proposed parallel network structure outperforms other detection and classification methods in the literature.</p>
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 65
  • [1]234567Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy