SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Böttcher Yvonne) "

Sökning: WFRF:(Böttcher Yvonne)

  • Resultat 1-10 av 14
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dimas, Antigone S., et al. (författare)
  • Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity
  • 2014
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 63:6, s. 2158-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF712, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
2.
  • Dupuis, Josée, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:2, s. 105-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
  •  
3.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 75-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
  •  
4.
  • Abdalla, H., et al. (författare)
  • HESS Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007. ; 117:15
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l = -1.5 degrees, b = 0 degrees and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.
  •  
5.
  • Abramowski, A., et al. (författare)
  • Discovery of variable VHE gamma-ray emission from the binary system 1FGL J1018.6-5856
  • 2015
  • Ingår i: Astronomy and Astrophysics Supplement Series. - 0365-0138. ; 577
  • Tidskriftsartikel (refereegranskat)abstract
    • Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018-589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ$^2$/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018-589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018-589 A is best fit with a power-law function with photon index Γ = 2.20 \plusmn 0.14$_stat$ \plusmn 0.2$_sys$. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 \plusmn 0.4) \times 10$^-13$ TeV$^-1$ cm$^-2$ s$^-1$ at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of N$_sigma$\gt 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ \lsim 1 at 300 GeV).
  •  
6.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVERecent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action.RESEARCH DESIGN AND METHODSWe investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084).RESULTSThe glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction.CONCLUSIONSGenetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
7.
  • Keller, Maria, et al. (författare)
  • Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity
  • 2017
  • Ingår i: Molecular Metabolism. - Elsevier GmbH. - 2212-8778. ; 6:1, s. 86-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective/methods DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. Results We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. Conclusions Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity.
8.
  • Keller, Maria, et al. (författare)
  • THOC5 : A novel gene involved in HDL-cholesterol metabolism
  • 2013
  • Ingår i: Journal of Lipid Research. - American Society for Biochemistry and Molecular Biology. - 0022-2275. ; 54:11, s. 3170-3176
  • Tidskriftsartikel (refereegranskat)abstract
    • Although numerous genes are known to regulate serum lipid traits, identified variants explain only a small proportion of the expected heritability. We intended to identify further genetic variants associated with lipid phenotypes in a self-contained population of Sorbs in Germany. We performed a genome-wide association study (GWAS) on LDL-cholesterol, HDL-cholesterol (HDL-C), and triglyceride (TG) levels in 839 Sorbs. All single-nucleotide polymorphisms with a P value <0.01 were subjected to a meta-analysis, including an independent Swedish cohort (Diabetes Genetics Initiative; n = ∼ 3,100). Novel association signals with the strongest effects were subjected to replication studies in an additional German cohort (Berlin, n = 2,031). In the initial GWAS in the Sorbs, we identified 14 loci associated with lipid phenotypes reaching P values <10 -5 and confirmed significant effects for 18 previously reported loci. The combined meta-analysis of the three study cohorts (n(HDL) = 6041; n (LDL) = 5,995; n(TG) = 6,087) revealed a novel association for a variant in THOC5 (rs8135828) with serum HDL-C levels (P = 1.78 × 10-7; Z -score = -5.221). Consistently, the variant was also associated with circulating APOA1 levels in Sorbs. The small interfering RNA-mediated mRNA silencing of THOC5 in HepG2 cells resulted in lower mRNA levels of APOA1, SCARB1, and ABCG8 (all P < 0.05). We propose THOC5 to be a novel gene involved in the regulation of serum HDL-C levels.
  •  
9.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P &lt; 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for &gt;20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
10.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PLoS ONE. - San Francisco : Public Library of Science. - 1932-6203. ; 7:1, s. e29202
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P&lt;0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P&lt;0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P&lt;2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P&lt;0.05) and reached more nominal levels of significance (P&lt;2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
  • [1]2Nästa
Åtkomst
fritt online (6)
Typ av publikation
tidskriftsartikel (13)
konferensbidrag (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt (1)
Författare/redaktör
Kovacs, Peter (11)
Kuusisto, Johanna, (8)
Langenberg, Claudia (8)
Jackson, Anne U. (8)
Prokopenko, Inga (8)
Stringham, Heather M ... (8)
visa fler...
Bergman, Richard N. (8)
Collins, Francis S. (8)
Tönjes, Anke (8)
Lyssenko, Valeriya, (7)
Syvänen, Ann-Christi ... (7)
Stumvoll, Michael (7)
Mägi, Reedik (7)
Lind, Lars, (6)
Laakso, Markku, (6)
Hattersley, Andrew T (6)
Luan, Jian'an (6)
Thorleifsson, Gudmar (6)
Rayner, Nigel W. (6)
Steinthorsdottir, Va ... (6)
Illig, Thomas (6)
Tanaka, Toshiko (6)
Kumari, Meena (6)
Morris, Andrew D (6)
Forouhi, Nita G. (6)
Froguel, Philippe, (5)
Groop, Leif, (5)
Hofman, Albert, (5)
Wareham, Nicholas J. (5)
Clarke, Robert, (5)
McCarthy, Mark I (5)
Magnusson, Patrik K ... (5)
Boehnke, Michael (5)
Mohlke, Karen L (5)
Ingelsson, Erik (5)
Mangino, Massimo (5)
Gieger, Christian (5)
Kaprio, Jaakko (5)
Barroso, Ines (5)
Hayward, Caroline (5)
Sanna, Serena (5)
Campbell, Harry (5)
Hicks, Andrew A. (5)
Tuomilehto, Jaakko (5)
Blüher, Matthias (5)
Hingorani, Aroon D (5)
Dupuis, Josée (5)
Meigs, James B. (5)
Kanoni, Stavroula, (5)
Goel, Anuj (5)
visa färre...
Lärosäte
Lunds universitet (8)
Uppsala universitet (8)
Karolinska Institutet (6)
Umeå universitet (5)
Göteborgs universitet (4)
Linnéuniversitetet (3)
visa fler...
Högskolan Dalarna (3)
Stockholms universitet (2)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy