SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Babic Ana) ;pers:(Trichopoulou Antonia)"

Sökning: WFRF:(Babic Ana) > Trichopoulou Antonia

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sasamoto, Naoko, et al. (författare)
  • Development and validation of circulating CA125 prediction models in postmenopausal women
  • 2019
  • Ingår i: Journal of Ovarian Research. - : BioMed Central (BMC). - 1757-2215. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cancer Antigen 125 (CA125) is currently the best available ovarian cancer screening biomarker. However, CA125 has been limited by low sensitivity and specificity in part due to normal variation between individuals. Personal characteristics that influence CA125 could be used to improve its performance as screening biomarker.Methods: We developed and validated linear and dichotomous (>= 35 U/mL) circulating CA125 prediction models in postmenopausal women without ovarian cancer who participated in one of five large population-based studies: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO, n = 26,981), European Prospective Investigation into Cancer and Nutrition (EPIC, n = 861), the Nurses' Health Studies (NHS/NHSII, n = 81), and the New England Case Control Study (NEC, n = 923). The prediction models were developed using stepwise regression in PLCO and validated in EPIC, NHS/NHSII and NEC. Result The linear CA125 prediction model, which included age, race, body mass index (BMI), smoking status and duration, parity, hysterectomy, age at menopause, and duration of hormone therapy (HT), explained 5% of the total variance of CA125. The correlation between measured and predicted CA125 was comparable in PLCO testing dataset (r = 0.18) and external validation datasets (r = 0.14). The dichotomous CA125 prediction model included age, race, BMI, smoking status and duration, hysterectomy, time since menopause, and duration of HT with AUC of 0.64 in PLCO and 0.80 in validation dataset.Conclusions: The linear prediction model explained a small portion of the total variability of CA125, suggesting the need to identify novel predictors of CA125. The dichotomous prediction model showed moderate discriminatory performance which validated well in independent dataset. Our dichotomous model could be valuable in identifying healthy women who may have elevated CA125 levels, which may contribute to reducing false positive tests using CA125 as screening biomarker.
  •  
2.
  • Sasamoto, Naoko, et al. (författare)
  • Predicting Circulating CA125 Levels among Healthy Premenopausal Women
  • 2019
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:6, s. 1076-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cancer antigen 125 (CA125) is the most promising ovarian cancer screening biomarker to date. Multiple studies reported CA125 levels vary by personal characteristics, which could inform personalized CA125 thresholds. However, this has not been well described in premenopausal women. Methods: We evaluated predictors of CA125 levels among 815 premenopausal women from the New England Case Control Study (NEC). We developed linear and dichotomous (>= 35 U/mL) CA125 prediction models and externally validated an abridged model restricting to available predictors among 473 premenopausal women in the European Prospective Investigation into Cancer and Nutrition Study (EPIC). Results: The final linear CA125 prediction model included age, race, tubal ligation, endometriosis, menstrual phase at blood draw, and fibroids, which explained 7% of the total variance of CA125. The correlation between observed and predicted CA125 levels based on the abridged model (including age, race, and menstrual phase at blood draw) had similar correlation coefficients in NEC (r = 0.22) and in EPIC (r = 0.22). The dichotomous CA125 prediction model included age, tubal ligation, endometriosis, prior personal cancer diagnosis, family history of ovarian cancer, number of miscarriages, menstrual phase at blood draw, and smoking status with AUC of 0.83. The abridged dichotomous model (including age, number of miscarriages, menstrual phase at blood draw, and smoking status) showed similar AUCs in NEC (0.73) and in EPIC (0.78). Conclusions: We identified a combination of factors associated with CA125 levels in premenopausal women. Impact: Our model could be valuable in identifying healthy women likely to have elevated CA125 and consequently improve its specificity for ovarian cancer screening.
  •  
3.
  • Zhong, Jun, et al. (författare)
  • A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer
  • 2020
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 112:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. Methods: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). Results: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEPI) and 11 at six known risk loci (5p15.33: TERT, CLPTMIL, ZDHHCIIB; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTMIL, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. Conclusions: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy