SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Backman Samuel) ;pers:(Zedenius Jan)"

Sökning: WFRF:(Backman Samuel) > Zedenius Jan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paulsson, Johan O., et al. (författare)
  • Whole‐genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation
  • 2020
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 250:2, s. 183-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics underlying thyroid cancer dedifferentiation is only partly understood and has not yet been characterised using comprehensive pan‐genomic analyses. We investigated a unique case with synchronous follicular thyroid carcinoma (FTC), poorly differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma (ATC), as well as regional lymph node metastases from the PDTC and ATC from a single patient using whole‐genome sequencing (WGS). The FTC displayed mutations in CALR, RB1, and MSH2, and the PDTC exhibited mutations in TP53, DROSHA, APC, TERT, and additional DNA repair genes – associated with an immense increase in sub‐clonal somatic mutations. All components displayed an overrepresentation of C>T transitions with associated microsatellite instability (MSI) in the PDTC and ATC, with borderline MSI in the FTC. Clonality analyses pinpointed a shared ancestral clone enriched for mutations in TP53‐associated regulation of DNA repair and identified important sub‐clones for each tumour component already present in the corresponding preceding lesion. This genomic characterisation of the natural progression of thyroid cancer reveals several novel genes of interest for future studies. Moreover, the findings support the theory of a stepwise dedifferentiation process and suggest that defects in DNA repair could play an important role in the clonal evolution of thyroid cancer.
  •  
2.
  • Stenman, Adam, et al. (författare)
  • Pan-genomic characterization of high-risk pediatric papillary thyroid carcinoma
  • 2021
  • Ingår i: Endocrine-Related Cancer. - 1351-0088 .- 1479-6821. ; 28:5, s. 337-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Pediatric papillary thyroid carcinomas (pPTCs) are often indolent tumors with excellent long- term outcome, although subsets of cases are clinically troublesome and recur. Although it is generally thought to exhibit similar molecular aberrancies as their counterpart tumors in adults, the pan-genomic landscape of clinically aggressive pPTCs has not been previously described. In this study, five pairs of primary and synchronously metastatic pPTC from patients with high-risk phenotypes were characterized using parallel whole-genome and -transcriptome sequencing. Primary tumors and their metastatic components displayed an exceedingly low number of coding somatic mutations and gross chromosomal alterations overall, with surprisingly few shared mutational events. Two cases exhibited one established gene fusion event each (SQSTM1-NTRK3 and NCOA4-RET) in both primary and metastatic tissues, and one case each was positive for a BRAF V600E mutation and a germline truncating CHEK2 mutation, respectively. One single case was without apparent driver events and was considered as a genetic orphan. Non-coding mutations in cancer-associated regions were generally not present. By expressional analyses, fusion-driven primary and metastatic pPTC clustered separately from the mutation-driven cases and the sole genetic orphan. We conclude that pPTCs are genetically indolent tumors with exceedingly stable genomes. Several mutations found exclusively in the metastatic samples which may represent novel genetic events that drive the metastatic behavior, and the differences in mutational compositions suggest early clonal divergence between primary tumors and metastases. Moreover, an overrepresentation of mutational and expressional dysregulation of immune regulatory pathways was noted among fusion-positive pPTC metastases, suggesting that these tumors might facilitate spread through immune evasive mechanisms.
  •  
3.
  • Åkerström, Tobias, et al. (författare)
  • Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas.
  • 2015
  • Ingår i: Endocrine-Related Cancer. - 1351-0088 .- 1479-6821. ; 22:5, s. 735-744
  • Tidskriftsartikel (refereegranskat)abstract
    • Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca(2) (+) regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca(2) (+) levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy