SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bainbridge Matthew N.) ;pers:(Jenkins Robert B.)"

Sökning: WFRF:(Bainbridge Matthew N.) > Jenkins Robert B.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bainbridge, Matthew N, et al. (författare)
  • Germline mutations in shelterin complex genes are associated with familial glioma
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 107:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.
  •  
2.
  • Jalali, Ali, et al. (författare)
  • Targeted sequencing in chromosome 17q linkage region identifies familial glioma candidates in the Gliogene Consortium
  • 2015
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 5, s. 8278-
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma is a rare, but highly fatal, cancer that accounts for the majority of malignant primary brain tumors. Inherited predisposition to glioma has been consistently observed within non-syndromic families. Our previous studies, which involved non-parametric and parametric linkage analyses, both yielded significant linkage peaks on chromosome 17q. Here, we use data from next generation and Sanger sequencing to identify familial glioma candidate genes and variants on chromosome 17q for further investigation. We applied a filtering schema to narrow the original list of 4830 annotated variants down to 21 very rare (<0.1% frequency), non-synonymous variants. Our findings implicate the MYO19 and KIF18B genes and rare variants in SPAG9 and RUNDC1 as candidates worthy of further investigation. Burden testing and functional studies are planned.
  •  
3.
  • Andersson, Ulrika, et al. (författare)
  • Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer
  • 2014
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 16:10, s. 1333-1340
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods: Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer. The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results: We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions: Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes.
  •  
4.
  • Ruiz, Vanessa Y., et al. (författare)
  • Molecular subtyping of tumors from patients with familial glioma
  • 2018
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 20:6, s. 810-817
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Single-gene mutation syndromes account for some familial glioma (FG); however, they make up only a small fraction of glioma families. Gliomas can be classified into 3 major molecular subtypes based on isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion. We hypothesized that the prevalence of molecular subtypes might differ in familial versus sporadic gliomas and that tumors in the same family should have the same molecular subtype. Methods. Participants in the FG study (Gliogene) provided samples for germline DNA analysis. Formalin-fixed, paraffin-embedded tumors were obtained from a subset of FG cases, and DNA was extracted. We analyzed tissue from 75 families, including 10 families containing a second affected family member. Copy number variation data were obtained using a first-generation Affymetrix molecular inversion probe (MIP) array. Results. Samples from 62 of 75 (83%) FG cases could be classified into the 3 subtypes. The prevalence of the molecular subtypes was: 30 (48%) IDH-wildtype, 21 (34%) IDH-mutant non-codeleted, and 11 (19%) IDH-mutant and 1p/19q codeleted. This distribution of molecular subtypes was not statistically different from that of sporadic gliomas (P = 0.54). Of 10 paired FG samples, molecular subtypes were concordant for 7 (kappa = 0.59): 3 IDH-mutant non-codeleted, 2 IDH-wildtype, and 2 IDH-mutant and 1p/19q codeleted gliomas. Conclusions. Our data suggest that within individual families, patients develop gliomas of the same molecular subtype. However, we did not observe differences in the prevalence of the molecular subtypes in FG compared with sporadic gliomas. These observations provide further insight into the distribution of molecular subtypes in FG.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy