SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banasik Karina) ;lar1:(lu)"

Sökning: WFRF:(Banasik Karina) > Lunds universitet

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allesøe, Rosa Lundbye, et al. (författare)
  • Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
  • 2023
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 41:3, s. 399-408
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
  •  
2.
  • Banasik, Karina, et al. (författare)
  • The FOXO3A rs2802292 G-Allele Associates with Improved Peripheral and Hepatic Insulin Sensitivity and Increased Skeletal Muscle-FOXO3A mRNA Expression in Twins.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96, s. 119-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The minor G allele of FOXO3A rs2802292 has been associated with longevity. We aimed to investigate whether a phenotype related to healthy metabolic aging could be identified in individuals carrying the longevity-associated FOXO3A rs2802292 G allele. Research Design and Methods: rs2802292 was genotyped in a phenotypically well-characterized population of young and elderly twins (n = 190) and in the population-based Inter99 cohort (n = 5768). All participants underwent oral glucose tolerance tests, and the twin population was additionally examined with an iv glucose tolerance test and a hyperinsulinemic, euglycemic clamp. Basal and insulin-stimulated FOXO3A mRNA expression was assessed in skeletal muscle biopsies from the twin population. Results: In the twin sample, carriers of the minor G allele of rs2802292 showed reduced fasting plasma insulin [per allele effect (β) = -13% (-24; -1) (95% confidence interval), P = 0.03] and lower incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -14% (-23; -), P = 0.005]. The G allele was associated with increased peripheral insulin action [glucose disposal rate clamp, β = 0.85 mg·kgfat-free mass(-1) · min(-1) (0.049; 1.64), P = 0.04] and lower hepatic insulin resistance index [β = -13% (-25; -1), P = 0.03]. Furthermore, carriers of the G allele had increased basal FOXO3A mRNA expression in skeletal muscle compared with T-allele carriers [β = 16% (0; 33), P = 0.047]. In the Inter99 sample, we found an association with reduced incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -3% (-5; -0.07), P = 0.04], but this association was not significant after adjustment for body mass index. Conclusion: Our data indicate that the minor G allele of FOXO3A rs2802292 is associated with enhanced peripheral and hepatic insulin sensitivity in our small twin cohort, which may be mediated through increased FOXO3A mRNA expression, although no major metabolic impact of rs2802292 was found in the large Inter99 cohort.
  •  
3.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 55:11, s. 1807-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
  •  
4.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X .- 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
5.
  • Hindy, George, et al. (författare)
  • Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis
  • 2022
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 132:24, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR’s pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin–9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.
  •  
6.
  • Lundgaard, Agnete T., et al. (författare)
  • BALDR : A Web-based platform for informed comparison and prioritization of biomarker candidates for type 2 diabetes mellitus
  • 2023
  • Ingår i: PLoS Computational Biology. - 1553-734X. ; 19:8 August
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus. While new technologies have improved the potential of identifying such biomarkers, at the same time there is an increasing need for informed prioritization to ensure efficient downstream verification. We have built BALDR, an automated pipeline for biomarker comparison and prioritization in the context of diabetes. BALDR includes protein, gene, and disease data from major public repositories, text-mining data, and human and mouse experimental data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read figures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes through the public website https://baldr.cpr.ku.dk.
  •  
7.
  • Moslemi, Camous, et al. (författare)
  • A large cohort study of the effects of Lewis, ABO, 13 other blood groups, and secretor status on COVID-19 susceptibility, severity, and long COVID-19
  • 2023
  • Ingår i: Transfusion. - : Wiley. - 0041-1132 .- 1537-2995. ; 63:1, s. 47-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous studies have reported Blood type O to confer a lower risk of SARS-CoV-2 infection, while secretor status and other blood groups have been suspected to have a similar effect as well. Study design and methods: To determine whether any other blood groups influence testing positive for SARS-CoV-2, COVID-19 severity, or prolonged COVID-19, we used a large cohort of 650,156 Danish blood donors with varying available data for secretor status and blood groups ABO, Rh, Colton, Duffy, Diego, Dombrock, Kell, Kidd, Knops, Lewis, Lutheran, MNS, P1PK, Vel, and Yt. Of these, 36,068 tested positive for SARS-CoV-2 whereas 614,088 tested negative between 2020-02-17 and 2021-08-04. Associations between infection and blood groups were assessed using logistic regression models with sex and age as covariates. Results: The Lewis blood group antigen Lea displayed strongly reduced SARS-CoV-2 susceptibility OR 0.85 CI[0.79–0.93] p <.001. Compared to blood type O, the blood types B, A, and AB were found more susceptible toward infection with ORs 1.1 CI[1.06–1.14] p <.001, 1.17 CI[1.14–1.2] p <.001, and 1.2 CI[1.14–1.26] p <.001, respectively. No susceptibility associations were found for the other 13 blood groups investigated. There was no association between any blood groups and COVID-19 hospitalization or long COVID-19. No secretor status associations were found. Discussion: This study uncovers a new association to reduced SARS-CoV-2 susceptibility for Lewis type Lea and confirms the previous link to blood group O. The new association to Lea could be explained by a link between mucosal microbiome and SARS-CoV-2.
  •  
8.
  • Moslemi, Camous, et al. (författare)
  • Genetic prediction of 33 blood group phenotypes using an existing genotype dataset
  • 2023
  • Ingår i: Transfusion. - 0041-1132. ; 63:12, s. 2297-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accurate blood type data are essential for blood bank management, but due to costs, few of 43 blood group systems are routinely determined in Danish blood banks. However, a more comprehensive dataset of blood types is useful in scenarios such as rare blood type allocation. We aimed to investigate the viability and accuracy of predicting blood types by leveraging an existing dataset of imputed genotypes for two cohorts of approximately 90,000 each (Danish Blood Donor Study and Copenhagen Biobank) and present a more comprehensive overview of blood types for our Danish donor cohort. Study Design and Methods: Blood types were predicted from genome array data using known variant determinants. Prediction accuracy was confirmed by comparing with preexisting serological blood types. The Vel blood group was used to test the viability of using genetic prediction to narrow down the list of candidate donors with rare blood types. Results: Predicted phenotypes showed a high balanced accuracy >99.5% in most cases: A, B, C/c, Coa/Cob, Doa/Dob, E/e, Jka/Jkb, Kna/Knb, Kpa/Kpb, M/N, S/s, Sda, Se, and Yta/Ytb, while some performed slightly worse: Fya/Fyb, K/k, Lua/Lub, and Vel ~99%–98% and CW and P1 ~96%. Genetic prediction identified 70 potential Vel negatives in our cohort, 64 of whom were confirmed correct using polymerase chain reaction (negative predictive value: 91.5%). Discussion: High genetic prediction accuracy in most blood groups demonstrated the viability of generating blood types using preexisting genotype data at no cost and successfully narrowed the pool of potential individuals with the rare Vel-negative phenotype from 180,000 to 70.
  •  
9.
  • Skotte, Line, et al. (författare)
  • Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:2, s. 555-568
  • Tidskriftsartikel (refereegranskat)abstract
    • Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 × 10-10. Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (rg = 0.39, P = 1.68 × 10-4). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.
  •  
10.
  • Slieker, Roderick C, et al. (författare)
  • Identification of biomarkers for glycaemic deterioration in type 2 diabetes
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy