SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bandinelli Stefania) ;hsvcat:3"

Search: WFRF:(Bandinelli Stefania) > Medical and Health Sciences

  • Result 1-10 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Nettleton, Jennifer A, et al. (author)
  • Gene x dietary pattern interactions in obesity : analysis of up to 68 317 adults of European ancestry
  • 2015
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:16, s. 4728-4738
  • Journal article (peer-reviewed)abstract
    • Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphismswere genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjustedWHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjustedWHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.
  •  
3.
  • O'Keefe, James H., et al. (author)
  • Omega-3 Blood Levels and Stroke Risk : A Pooled and Harmonized Analysis of 183 291 Participants From 29 Prospective Studies
  • 2024
  • In: Stroke. - : American Heart Association. - 0039-2499 .- 1524-4628. ; 55:1, s. 50-58
  • Journal article (peer-reviewed)abstract
    • BACKGROUND:The effect of marine omega-3 PUFAs on risk of stroke remains unclear.METHODS:We investigated the associations between circulating and tissue omega-3 PUFA levels and incident stroke (total, ischemic, and hemorrhagic) in 29 international prospective cohorts. Each site conducted a de novo individual-level analysis using a prespecified analytical protocol with defined exposures, covariates, analytical methods, and outcomes; the harmonized data from the studies were then centrally pooled. Multivariable-adjusted HRs and 95% CIs across omega-3 PUFA quintiles were computed for each stroke outcome.RESULTS:Among 183 291 study participants, there were 10 561 total strokes, 8220 ischemic strokes, and 1142 hemorrhagic strokes recorded over a median of 14.3 years follow-up. For eicosapentaenoic acid, comparing quintile 5 (Q5, highest) with quintile 1 (Q1, lowest), total stroke incidence was 17% lower (HR, 0.83 [CI, 0.76–0.91]; P<0.0001), and ischemic stroke was 18% lower (HR, 0.82 [CI, 0.74–0.91]; P<0.0001). For docosahexaenoic acid, comparing Q5 with Q1, there was a 12% lower incidence of total stroke (HR, 0.88 [CI, 0.81–0.96]; P=0.0001) and a 14% lower incidence of ischemic stroke (HR, 0.86 [CI, 0.78–0.95]; P=0.0001). Neither eicosapentaenoic acid nor docosahexaenoic acid was associated with a risk for hemorrhagic stroke. These associations were not modified by either baseline history of AF or prevalent CVD.CONCLUSIONS:Higher omega-3 PUFA levels are associated with lower risks of total and ischemic stroke but have no association with hemorrhagic stroke.
  •  
4.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
5.
  • Newton-Cheh, Christopher, et al. (author)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
6.
  • Coviello, Andrea D, et al. (author)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:7
  • Journal article (peer-reviewed)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p=1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p=1.4×10(-11)), GCKR (rs780093, 2p23.3, p=2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p=3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p=6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p=1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p=8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p=3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p=4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p=1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p=2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p=5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p=2.5×10(-08), women p=0.66, heterogeneity p=0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
7.
  • Kilpeläinen, Tuomas O, et al. (author)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • In: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) =0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio =1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio =1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
8.
  • Ben-Avraham, Dan, et al. (author)
  • The complex genetics of gait speed : Genome-wide meta-analysis approach
  • 2017
  • In: Aging. - : Impact Journals, LLC. - 1945-4589. ; 9:1, s. 209-246
  • Journal article (peer-reviewed)abstract
    • Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
  •  
9.
  • Ding, Ming, et al. (author)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • In: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833 .- 0959-8138. ; 356
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
10.
  • Do, Ron, et al. (author)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Journal article (peer-reviewed)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 33
Type of publication
journal article (32)
research review (1)
Type of content
peer-reviewed (33)
Author/Editor
Hofman, Albert (23)
Uitterlinden, André ... (23)
Wareham, Nicholas J. (16)
McCarthy, Mark I (15)
Loos, Ruth J F (15)
Kanoni, Stavroula (15)
show more...
Lind, Lars (14)
van Duijn, Cornelia ... (14)
Liu, Yongmei (14)
Salomaa, Veikko (13)
Deloukas, Panos (13)
Boehnke, Michael (13)
Ingelsson, Erik (13)
Tuomilehto, Jaakko (13)
Barroso, Ines (13)
Gudnason, Vilmundur (13)
Siscovick, David S. (13)
Laakso, Markku (12)
Orho-Melander, Marju (12)
Renström, Frida (12)
Langenberg, Claudia (12)
Stefansson, Kari (12)
Rotter, Jerome I. (12)
Luan, Jian'an (12)
Zillikens, M. Carola (12)
Harris, Tamara B (12)
Cupples, L. Adrienne (12)
Campbell, Harry (11)
Franks, Paul W. (11)
Mohlke, Karen L (11)
Mangino, Massimo (11)
Gieger, Christian (11)
Spector, Tim D. (11)
Jarvelin, Marjo-Riit ... (11)
Wilson, James F. (11)
Hayward, Caroline (11)
Lemaitre, Rozenn N. (11)
Illig, Thomas (11)
Groop, Leif (10)
Perola, Markus (10)
Rudan, Igor (10)
North, Kari E. (10)
Kuusisto, Johanna (10)
Hu, Frank B. (10)
Chasman, Daniel I. (10)
Munroe, Patricia B. (10)
Pramstaller, Peter P ... (10)
Psaty, Bruce M (10)
Kleber, Marcus E. (10)
van der Harst, Pim (10)
show less...
University
Lund University (23)
Uppsala University (22)
Karolinska Institutet (19)
Umeå University (16)
University of Gothenburg (10)
Högskolan Dalarna (3)
show more...
Stockholm University (2)
show less...
Language
English (33)
Research subject (UKÄ/SCB)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view