SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banerjee Amitava) ;hsvcat:2"

Sökning: WFRF:(Banerjee Amitava) > Teknik

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Philippe, Bertrand, Dr. 1986-, et al. (författare)
  • Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy : Variation with Photon Energy
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:48, s. 26655-26666
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of the electronic structure of perovskite materials used in photovoltaic devices is essential for their development and optimization. In this investigation, synchrotron-based photoelectron spectroscopy (PES) was used to experimentally delineate the character and energy position of the valence band structures of a mixed perovskite. The valence band was measured using PES with photon energies ranging from ultraviolet photoelectron spectroscopy (21.2 eV) to hard X-rays (up to 4000 eV), and by taking the variation of the photoionization cross sections into account, we could experimentally determine the inorganic and organic contributions. The experiments were compared to theoretical calculations to further distinguish the role of the different anions in the electronic structure. This work also includes a thorough study of the valence band maximum and its position in relation to the Fermi level, which is crucial for the design and optimization of complete solar cells and their functional properties.
  •  
2.
  • Araujo, Rafael B., et al. (författare)
  • Assessing Electrochemical Properties of Polypyridine and Polythiophene for Prospective Application in Sustainable Organic Batteries
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 19:4, s. 3307-3314
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting polymers are being considered promising candidates for sustainable organic batteries mainly due to their fast electron transport properties and high recyclability. In this work, key properties of polythiophene and polypyridine have been assessed through a combined theoretical and experimental study focusing on such applications. A theoretical protocol has been developed to calculate redox potentials in solution within the framework of the density functional theory and using continuous solvation models. Here, the evolution of the electrochemical properties of solvated oligomers as a function of the length of the chain is analyzed and then the polymer properties are estimated via linear regressions using ordinary least square. The predicted values were verified against our electrochemical experiments. This protocol can now be employed to screen a large database of compounds in order to identify organic electrodes with superior properties.
  •  
3.
  • Araujo, Rafael B., et al. (författare)
  • Designing strategies to tune reduction potential of organic molecules for sustainable high capacity batteries application
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:9, s. 4430-4454
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic compounds evolve as a promising alternative to the currently used inorganic materials in rechargeable batteries due to their low-cost, environmentally friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, [small pi] bonds, as well as carboxyl groups on the formal potential, has been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.
  •  
4.
  • Araujo, Rafael Barros Neves de, et al. (författare)
  • Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2 : A High Voltage Organic Cathode for Sodium Rechargeable Batteries
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:26, s. 14027-14036
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current emerging sustainable organic battery field, quinones are seen as one of the prime candidates for application in rechargeable battery electrodes. Recently, C6Cl4O2, a modified quinone, has been proposed as a high voltage organic cathode. However, the sodium insertion mechanism behind the cell reaction remained unclear due to the nescience of the right crystal structure. Here, the framework of the density functional theory (DFT) together with an evolutionary algorithm was employed to elucidate the crystal structures of the compounds NaxC6Cl4O2 (x = 0.5, 1.0, 1.5 and 2). Along with the usefulness of PBE functional to reflect the experimental potential, also the importance of the hybrid functional to divulge the hidden theoretical capacity is evaluated. We showed that the experimentally observed lower specific capacity is a result of the great stabilization of the intermediate phase Na1.5C6Cl4O2. The calculated activation barriers for the ionic hops are 0.68, 0.40, and 0.31 eV, respectively, for NaC6Cl4O2, Na1.5C6Cl4O2, and Na2C6Cl4O2. These results indicate that the kinetic process must not be a limiting factor upon Na insertion. Finally, the correct prediction of the specific capacity has confirmed that the theoretical strategy used, employing evolutionary simulations together with the hybrid functional framework, can rightly model the thermodynamic process in organic electrode compounds.
  •  
5.
  • Wang, Huan, et al. (författare)
  • Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:25, s. 13609-13617
  • Tidskriftsartikel (refereegranskat)abstract
    • Quinones have a capacity for high energy storage and exhibit facile and reversible electrochemistry in several widely different electrolytes. They are, therefore, one of the most popular compounds currently used in organic materials based electrical energy storage. Quinone electrochemistry is, however, strongly affected by the composition of the electrolyte. This report summarizes our systematic investigation of the redox chemistry of a series of quinones with electron-withdrawing and electron-donating substituents in aqueous solution and in acetonitrile (MeCN) with tetrabutylammonium (TBA+)-, Li+-, and H+-based electrolytes. As a general trend, proton cycling, TBA+ cycling, and Li+ cycling resulted in the highest, the lowest, and intermediate redox potentials, respectively. We attribute this trend to stabilization of the reduced state, namely benzene-1,4-bis(olate) (Q2–), by the different counterions. Density functional theory (DFT) calculations showed that, in the fully reduced state, two Li+ counterions accommodated 35% of the injected electron charges while proton counterions accommodated 69% of the injected charge, thus significantly stabilizing the reduced state. However, with the bulky TBA+ as the cycling ion, this stabilization was not possible and the reduction potential was decreased. In addition, we showed that stabilization of the counterion also affected the Coulombic interaction between the successively injected charges, resulting in the well-known disproportionation of the semiquinone radical intermediate state with proton cycling, while Li+ and TBA+ cycling generally resulted in two consecutive redox reactions. Finally, we showed that the electrolyte strongly influences the effects of substitution with electron-donating and electron-withdrawing substituents. A strong relationship between the redox potential and the electron-withdrawing power of the substituent was observed in the MeCN solution. However, this relationship was completely lost in aqueous solution. The reason for the loss of the relationship was addressed using a DFT explicit-solvent model and is discussed.
  •  
6.
  • Banerjee, Amitava, et al. (författare)
  • Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)(3)](+)-based hybrid perovskite solar cells
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:35, s. 18561-18568
  • Tidskriftsartikel (refereegranskat)abstract
    • Guanidinium lead iodide (GAPbI(3)) has been synthesized experimentally, but stability remains an issue, which can be modulated by the insertion of bromine (Br) into the system. We have performed a systematic theoretical investigation to see how bromination can tune the stability of GAPbI(3). The optical properties were also determined, and we have found formation enthalpy-based stability in the perovskite systems, which are active in the visible and IR region even after bromine insertion and additionally more active in the IR range with the transition from GAPbI(3) to GAPbBr(3). The spin orbit coupling effect is considered throughout the band structure calculations. The ensemble of the primary and secondary gaps in the half and fully brominated hybrid perovskites leads to the phenomenon of a multipeak response in the optical spectra, which can be subsequently attributed as multivalley optical response behaviour. This multivalley optical behaviour enables the brominated guanidinium-based hybrid perovskites to exhibit broad light harvesting abilities, and this can be perceived as an idea for natural multi-junction solar cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy