SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bardenhagen A.) ;spr:eng"

Sökning: WFRF:(Bardenhagen A.) > Engelska

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brommage, Robert, et al. (författare)
  • NOTUM inhibition increases endocortical bone formation and bone strength
  • 2019
  • Ingår i: Bone Research. - : Springer Science and Business Media LLC. - 2095-4700 .- 2095-6231. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The disability, mortality and costs caused by non-vertebral osteoporotic fractures are enormous. Existing osteoporosis therapies are highly effective at reducing vertebral but not non-vertebral fractures. Cortical bone is a major determinant of non-vertebral bone strength. To identify novel osteoporosis drug targets, we phenotyped cortical bone of 3 366 viable mouse strains with global knockouts of druggable genes. Cortical bone thickness was substantially elevated in Notum(-/-) mice. NOTUM is a secreted WNT lipase and we observed high NOTUM expression in cortical bone and osteoblasts but not osteoclasts. Three orally active small molecules and a neutralizing antibody inhibiting NOTUM lipase activity were developed. They increased cortical bone thickness and strength at multiple skeletal sites in both gonadal intact and ovariectomized rodents by stimulating endocortical bone formation. Thus, inhibition of NOTUM activity is a potential novel anabolic therapy for strengthening cortical bone and preventing non-vertebral fractures.
  •  
2.
  • Xin, Zhao, et al. (författare)
  • A framework for optimization of hybrid aircraft
  • 2019
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608 ; 3
  • Konferensbidrag (refereegranskat)abstract
    • To achieve the goals of substantial improvements in efficiency and emissions set by Flightpath 2050, fundamentally different concepts are required. As one of the most promising solutions, electrification of the aircraft primary propulsion is currently a prime focus of research and development. Unconventional propulsion sub-systems, mainly the electrical power system, associated thermal management system and transmission system, provide a variety of options for integration in the existing propulsion systems. Different combinations of the gas turbine and the unconventional propulsion sub-systems introduce different configurations and operation control strategies. The trade-off between the use of the two energy sources, jet fuel and electrical energy, is primarily a result of the trade-offs between efficiencies and sizing characteristics of these sub-systems. The aircraft structure and performance are the final carrier of these trade-offs. Hence, full design space exploration of various hybrid derivatives requires global investigation of the entire aircraft considering these key propulsion sub-systems and the aircraft structure and performance, as well as their interactions. This paper presents a recent contribution of the development for a physics-based simulation and optimization platform for hybrid electric aircraft conceptual design. Modeling of each subsystem and the aircraft structure are described as well as the aircraft performance modeling and integration technique. With a focus on the key propulsion sub-systems, aircraft structure and performance that interfaces with existing conceptual design frameworks, this platform aims at full design space exploration of various hybrid concepts at a low TRL level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy