SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barkardottir Rosa B) ;pers:(Borg Åke)"

Sökning: WFRF:(Barkardottir Rosa B) > Borg Åke

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, Antonis C., et al. (författare)
  • Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3304-3321
  • Tidskriftsartikel (refereegranskat)abstract
    • Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [ hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 x 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 x 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.
  •  
2.
  • Gaudet, Mia M., et al. (författare)
  • Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer
  • 2010
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (, 40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (lambda) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values, 10 25 and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, p = 3: 8 x 10(-5)) and for rs311499 was 0.72 (95% CI 0.61-0.85, p = 6: 6 x 10(-5)). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, p = 1: 2 x 10(-8)). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.
  •  
3.
  • Arason, Adalgeir, et al. (författare)
  • Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families
  • 2010
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:4, s. R50-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomes 2p, 6q and 14q are candidate sites for genes contributing together to high breast cancer risk. A polygenic model is supported, suggesting the joint effect of genes in contributing to breast cancer risk to be rather common in non-BRCA1/2 families. For genetic counselling it would seem important to resolve the mode of genetic interaction.
  •  
4.
  • Holm, Karolina, et al. (författare)
  • Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours.
  • 2012
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 133:2, s. 583-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of chromosomal region 11q13, containing the cell cycle regulatory gene CCND1, is frequently found in breast cancer and other malignancies. It is associated with the favourable oestrogen receptor (ER)-positive breast tumour phenotype, but also with poor prognosis and treatment failure. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting complex mechanisms and selective pressure during tumour progression. In this study, we used 32 k tiling BAC array CGH to analyse 94 CCND1-amplified breast tumours from sporadic, hereditary, and familial breast cancers to fine map chromosome 11q13. A set containing 281 CCND1-non-amplified breast tumours was used for comparisons. We used gene expression data to further validate the functional effect of gene amplification. We identified six core regions covering 11q13.1-q14.1 that were amplified in different combinations. The major core contained CCND1, whereas two cores were found proximal of CCND1 and three distal. The majority of the CCND1-amplified tumours were ER-positive and classified as luminal B. Furthermore, we found that CCND1 amplification is associated with a more aggressive phenotype within histological grade 2 tumours and luminal A subtype tumours. Amplification was equally prevalent in familial and sporadic tumours, but strikingly rare in BRCA1- and BRCA2-mutated tumours. We conclude that 11q13 includes many potential target genes in addition to CCND1.
  •  
5.
  • Johannsdottir, Hrefna K., et al. (författare)
  • Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors
  • 2006
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 119:5, s. 1052-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative genomic hybridization (CGH) analysis has shown that chromosome 5q deletions are the most frequent aberration in breast tumors from BRCA1 mutation carriers. To map the location of putative 5q tumor suppressor gene(s), 26 microsatellite markers covering chromosome 5 were used in loss of heterozygosity (LOH) analysis of breast tumors from BRCA1 (n = 42) and BRCA2 mutation carriers (n = 67), as well as in sporadic cases (n = 65). High, density array CGH was also used to map chromosome 5 imbalance in 10 BRCA1 tumors. A high LOH frequency was found in BRCA1 tumors (range 19-82%), as compared to BRCA2 and sporadic tumors (ranges 11-44% and 7-43%, respectively). In all, 11 distinct chromosome 5 regions with LOH were observed, the most frequent being 5q35.3 (82%), 5q14.2 (71%) and 5q33.1 (69%) in BRCA1 tumors; 5q35.3 (44%), 5q31.3 (43%) and 5q13.3 (43%) in BRCA2 tumors and 5q31.3 (43%) in sporadic tumors. Array CGH analysis confirmed the very high frequency of 5q deletions, including candidate tumor suppressor genes such as XRCC4, RAD50, RASA1, APC and PPP2R2B. In addition, 2 distinct homozygous deletions were identified, spanning regions of 0.7-1.5 Mbp on 5q12.1 and 5q12.3-q13.1, respectively. These regions include only a few genes, most notably BRCC3/DEPDC1B (pleckstrin/G protein interacting and RhoGAP domains) and PIK3R1 (PI3 kinase P85 regulatory subunit). Significant association (p <= 0.05) was found between LOH at certain 5q regions and factors of poor prognosis, including negative estrogen and progesterone receptor status, high grade, large tumor size and high portion of cells in S-phase. In conclusion, our results confirm a very high prevalence of chromosome 5q alterations in BRCA1 tumors, pinpointing new regions and genes that should be further investigated. (c) 2006 Wiley-Liss, Inc.
  •  
6.
  • Johansson, Ida, et al. (författare)
  • High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer
  • 2011
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 129:3, s. 747-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Male breast cancer (MBC) is extremely rare and poorly characterized on the molecular level. Using high-resolution genomic data, we aimed to characterize MBC by genomic imbalances and to compare it with female breast cancer (FBC), and further to investigate whether the genomic profiles hold any prognostic information. Fifty-six fresh frozen MBC tumors were analyzed using high-resolution tiling BAC arrays. Significant regions in common between cases were assessed using Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. A publicly available genomic data set of 359 FBC tumors was used for reference purposes. The data revealed a broad pattern of aberrations, confirming that MBC is a heterogeneous tumor type. Genomic gains were more common in MBC than in FBC and often involved whole chromosome arms, while losses of genomic material were less frequent. The most common aberrations were similar between the genders, but high-level amplifications were more common in FBC. We identified two genomic subgroups among MBCs; male-complex and male-simple. The male-complex subgroup displayed striking similarities with the previously reported luminal-complex FBC subgroup, while the male-simple subgroup seems to represent a new subgroup of breast cancer occurring only in men. There are many similarities between FBC and MBC with respect to genomic imbalances, but there are also distinct differences as revealed by high-resolution genomic profiling. MBC can be divided into two comprehensive genomic subgroups, which may be of prognostic value. The male-simple subgroup appears notably different from any genomic subgroup so far defined in FBC.
  •  
7.
  • Jönsson, Göran B, et al. (författare)
  • Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics
  • 2010
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Breast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes. Methods: We applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer. Results: We identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors from all gene-expression subtypes, the former being enriched for 8p12-amplified cases, whereas the mixed subtype included many tumors with predominantly DNA copy-number losses and poor prognosis. Conclusions: Global DNA copy-number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer. This revealed six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes. These genomic subtypes may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.
  •  
8.
  • Staaf, Johan, et al. (författare)
  • High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer
  • 2010
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets. Methods: Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail. Results: The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2-tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2-tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2-tumors. Conclusions: We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
  •  
9.
  • Staaf, Johan, et al. (författare)
  • Identification of Subtypes in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Reveals a Gene Signature Prognostic of Outcome.
  • 2010
  • Ingår i: Journal of Clinical Oncology. - 1527-7755. ; 28:11, s. 1813-1820
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Human epidermal growth factor receptor 2 (HER2) gene amplification or protein overexpression (HER2 positivity) defines a clinically challenging subgroup of patients with breast cancer (BC) with variable prognosis and response to therapy. We aimed to investigate the heterogeneous biologic appearance and clinical behavior of HER2-positive tumors using molecular profiling. PATIENTS AND METHODS: Hierarchical clustering of gene expression data from 58 HER2-amplified tumors of various stage, histologic grade, and estrogen receptor (ER) status was used to construct a HER2-derived prognostic predictor that was further evaluated in several large independent BC data sets. RESULTS: Unsupervised analysis identified three subtypes of HER2-positive tumors with mixed stage, histologic grade, and ER status. One subtype had a significantly worse clinical outcome. A prognostic predictor was created based on differentially expressed genes between the subtype with worse outcome and the other subtypes. The predictor was able to define patient groups with better and worse outcome in HER2-positive BC across multiple independent BC data sets and identify a sizable HER2-positive group with long disease-free survival and low mortality. Significant correlation to prognosis was also observed in basal-like, ER-negative, lymph node-positive, and high-grade tumors, irrespective of HER2 status. The predictor included genes associated with immune response, tumor invasion, and metastasis. CONCLUSION: The HER2-derived prognostic predictor provides further insight into the heterogeneous biology of HER2-positive tumors and may become useful for improved selection of patients who need additional treatment with new drugs targeting the HER2 pathway.
  •  
10.
  • Heikkinen, Katri, et al. (författare)
  • RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability
  • 2006
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 27:8, s. 1593-1599
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mre11 complex, composed of RAD50, NBS1 and MRE11, has an essential role in the maintenance of genomic integrity and preventing cells from malignancy. Here we report the association of three Mre11 complex mutations with hereditary breast cancer susceptibility, studied by using a case-control design with 317 consecutive, newly diagnosed Northern Finnish breast cancer patients and 1000 geographically matched healthy controls (P = 0.0004). RAD50 687delT displayed significantly elevated frequency in the studied patients (8 out of 317, OR 4.3, 95% CI 1.5-12.5, P = 0.008), which indicates that it is a relatively common low-penetrance risk allele in this cohort. Haplotype analysis and the screening of altogether 512 additional breast cancer cases from Sweden, Norway and Iceland suggest that RAD50 687delT is a Finnish founder mutation, not present in the other Nordic cohorts. The RAD50 IVS3-1G > A splicing mutation leading to translational frameshift was observed in one patient, and the NBS1 Leu150Phe missense mutation affecting a conserved residue in the functionally important BRCA1 carboxyterminal (BRCT) domain in two patients, both being absent from 1000 controls. Microsatellite marker analysis showed that loss of the wild-type allele was not involved in the tumorigenesis in any of the studied mutation carriers, but they all showed increased genomic instability assessed by cytogenetic analysis of peripheral blood T-lymphocytes (P = 0.006). In particular, the total number of chromosomal rearrangements was significantly increased (P = 0.002). These findings suggest an effect for RAD50 and NBS1 haploinsufficiency on genomic integrity and susceptibility to cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy