SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barkhof F) "

Sökning: WFRF:(Barkhof F)

  • Resultat 1-10 av 81
  • [1]234567...9Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frisoni, G. B., et al. (författare)
  • Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers
  • 2017
  • Ingår i: Lancet Neurology. - : Lancet Ltd. - 1474-4422 .- 1474-4465. ; 16:8, s. 661-676
  • Tidskriftsartikel (refereegranskat)abstract
    • The diagnosis of Alzheimer's disease can be improved by the use of biological measures. Biomarkers of functional impairment, neuronal loss, and protein deposition that can be assessed by neuroimaging (ie, MRI and PET) or CSF analysis are increasingly being used to diagnose Alzheimer's disease in research studies and specialist clinical settings. However, the validation of the clinical usefulness of these biomarkers is incomplete, and that is hampering reimbursement for these tests by health insurance providers, their widespread clinical implementation, and improvements in quality of health care. We have developed a strategic five-phase roadmap to foster the clinical validation of biomarkers in Alzheimer's disease, adapted from the approach for cancer biomarkers. Sufficient evidence of analytical validity (phase 1 of a structured framework adapted from oncology) is available for all biomarkers, but their clinical validity (phases 2 and 3) and clinical utility (phases 4 and 5) are incomplete. To complete these phases, research priorities include the standardisation of the readout of these assays and thresholds for normality, the evaluation of their performance in detecting early disease, the development of diagnostic algorithms comprising combinations of biomarkers, and the development of clinical guidelines for the use of biomarkers in qualified memory clinics.
  •  
2.
  • van de Pol, L. A., et al. (författare)
  • White matter hyperintensities and medial temporal lobe atrophy in clinical subtypes of mild cognitive impairment: the DESCRIPA study
  • 2009
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group. - 1468-330X. ; 80:10, s. 1069-1074
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Clinical subtypes of mild cognitive impairment (MCI) may represent different underlying aetiologies. Methods: This European, multicentre, memory clinic based study (DESCRIPA) of non-demented subjects investigated whether MCI subtypes have different brain correlates on MRI and whether the relation between subtypes and brain pathology is modified by age. Using visual rating scales, medial temporal lobe atrophy (MTA) (0-4) and white matter hyperintensities (WMH) (0-30) were assessed. Results: Severity of MTA differed between MCI subtypes (p < 0.001), increasing from a mean of 0.8 (SD 0.7) in subjective complaints (n = 77) to 1.3 (0.8) in non-amnestic MCI (n = 93), and from 1.4 (0.9) in single domain amnestic MCI (n = 70) to 1.7 (0.9) in multiple domain amnestic MCI (n = 89). The association between MCI subtype and MTA was modified by age and mainly present in subjects >70 years of age. Severity of WMH did not differ between MCI subtypes (p = 0.21). However, the combination of MTA and WMH differed between MCI subtypes (p = 0.02) Conclusion: We conclude that MCI subtypes may have different brain substrates, especially in older subjects. Isolated MTA was mainly associated with amnestic MCI subtypes, suggesting AD as the underlying cause. In non-amnestic MCI, the relatively higher prevalence of MTA in combination with WMH may suggest a different pathophysiological origin.
  •  
3.
  • Bos, I., et al. (författare)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
4.
  • Vos, S., et al. (författare)
  • Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI
  • 2012
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 33:10, s. 2272-2281
  • Tidskriftsartikel (refereegranskat)abstract
    • Our aim was to identify the best diagnostic test sequence for predicting Alzheimer's disease (AD)-type dementia in subjects with mild cognitive impairment (MCI) using cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) biomarkers. We selected 153 subjects with mild cognitive impairment from a multicenter memory clinic-based cohort. We tested the CSF beta amyloid (A beta)1-42/tau ratio using enzyme-linked immunosorbent assay (ELISA) and hippocampal volumes (HCVs) using the atlas-based learning embeddings for atlas propagation (LEAP) method. Outcome measure was progression to AD-type dementia in 2 years. At follow-up, 48 (31%) subjects converted to AD-type dementia. In multivariable analyses, CSF A beta 1-42/tau and HCV predicted AD-type dementia regardless of apolipoprotein E (APOE) genotype and cognitive scores. Test sequence analyses showed that CSF A beta 1-42/tau increased predictive accuracy in subjects with normal HCV (p < 0.001) and abnormal HCV (p = 0.025). HCV increased predictive accuracy only in subjects with normal CSF A beta 1-42/tau (p = 0.014). Slope analyses for annual cognitive decline yielded similar results. For selection of subjects for a prodromal AD trial, the best balance between sample size and number of subjects needed to screen was obtained with CSF markers. These results provide further support for the use of CSF and magnetic resonance imaging biomarkers to identify prodromal AD. (c) 2012 Elsevier Inc. All rights reserved.
  •  
5.
  • Chételat, Gaël, et al. (författare)
  • Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  • 2020
  • Ingår i: The Lancet Neurology. - : Lancet Ltd. - 1474-4422 .- 1474-4465. ; 19:11, s. 951-962
  • Forskningsöversikt (refereegranskat)abstract
    • Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and 18F-fluorodeoxyglucose (18F-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and 18F-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
  •  
6.
  • Jokinen, H., et al. (författare)
  • Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline
  • 2020
  • Ingår i: Stroke. - 0039-2499 .- 1524-4628. ; 51:1, s. 170-178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- Cerebral small vessel disease is characterized by a wide range of focal and global brain changes. We used a magnetic resonance imaging segmentation tool to quantify multiple types of small vessel disease-related brain changes and examined their individual and combined predictive value on cognitive and functional abilities. Methods- Magnetic resonance imaging scans of 560 older individuals from LADIS (Leukoaraiosis and Disability Study) were analyzed using automated atlas- and convolutional neural network-based segmentation methods yielding volumetric measures of white matter hyperintensities, lacunes, enlarged perivascular spaces, chronic cortical infarcts, and global and regional brain atrophy. The subjects were followed up with annual neuropsychological examinations for 3 years and evaluation of instrumental activities of daily living for 7 years. Results- The strongest predictors of cognitive performance and functional outcome over time were the total volumes of white matter hyperintensities, gray matter, and hippocampi (P<0.001 for global cognitive function, processing speed, executive functions, and memory and P<0.001 for poor functional outcome). Volumes of lacunes, enlarged perivascular spaces, and cortical infarcts were significantly associated with part of the outcome measures, but their contribution was weaker. In a multivariable linear mixed model, volumes of white matter hyperintensities, lacunes, gray matter, and hippocampi remained as independent predictors of cognitive impairment. A combined measure of these markers based on Z scores strongly predicted cognitive and functional outcomes (P<0.001) even above the contribution of the individual brain changes. Conclusions- Global burden of small vessel disease-related brain changes as quantified by an image segmentation tool is a powerful predictor of long-term cognitive decline and functional disability. A combined measure of white matter hyperintensities, lacunar, gray matter, and hippocampal volumes could be used as an imaging marker associated with vascular cognitive impairment.
  •  
7.
  •  
8.
  • Altomare, Daniele, et al. (författare)
  • Prognostic value of Alzheimer's biomarkers in mild cognitive impairment : the effect of age at onset
  • 2019
  • Ingår i: ; 266:10, s. 2535-2545
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The aim of this study is to assess the impact of age at onset on the prognostic value of Alzheimer's biomarkers in a large sample of patients with mild cognitive impairment (MCI). Methods We measured A beta 42, t-tau, hippocampal volume on magnetic resonance imaging (MRI) and cortical metabolism on fluorodeoxyglucose-positron emission tomography (FDG-PET) in 188 MCI patients followed for at least 1 year. We categorised patients into earlier and later onset (EO/LO). Receiver operating characteristic curves and corresponding areas under the curve (AUCs) were performed to assess and compar the biomarker prognostic performances in EO and LO groups. Linear Model was adopted for estimating the time-to-progression in relation with earlier/later onset MCI groups and biomarkers. Results In earlier onset patients, all the assessed biomarkers were able to predict cognitive decline (p < 0.05), with FDG-PET showing the best performance. In later onset patients, all biomarkers but t-tau predicted cognitive decline (p < 0.05). Moreover, FDG-PET alone in earlier onset patients showed a higher prognostic value than the one resulting from the combination of all the biomarkers in later onset patients (earlier onset AUC 0.935 vs later onset AUC 0.753, p < 0.001). Finally, FDG-PET showed a different prognostic value between earlier and later onset patients (p = 0.040) in time-to-progression allowing an estimate of the time free from disease. Discussion FDG-PET may represent the most universal tool for the establishment of a prognosis in MCI patients and may be used for obtaining an onset-related estimate of the time free from disease.
  •  
9.
  • Caroli, A., et al. (författare)
  • Mild cognitive impairment with suspected nonamyloid pathology (SNAP) Prediction of progression
  • 2015
  • Ingår i: Neurology. - 0028-3878 .- 1526-632X. ; 84:5, s. 508-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives:The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI).Methods:We measured markers of amyloid pathology (CSF -amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [F-18]-fluorodeoxyglucose-PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A- and N+/N- based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A-N+ cases.Results:The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A-N-, A+N-, SNAP, and A+N+, respectively; the proportion of APOE epsilon 4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N- and A+N+ groups (p 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A-N-, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N- patients did not (hazard ratio = 1.13, p = 0.771). In A+N- and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073).Conclusions:Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.
  •  
10.
  • Chetelat, G., et al. (författare)
  • Amyloid-PET and 18-F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  • 2020
  • Ingår i: Lancet Neurology. - 1474-4422. ; 19:11, s. 951-962
  • Forskningsöversikt (refereegranskat)abstract
    • Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and F-18-fluorodeoxyglucose (F-18-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and F-18-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 81
  • [1]234567...9Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy