SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barkhof F) ;pers:(Ossenkoppele R)"

Sökning: WFRF:(Barkhof F) > Ossenkoppele R

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Caroli, A., et al. (författare)
  • Mild cognitive impairment with suspected nonamyloid pathology (SNAP) Prediction of progression
  • 2015
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 84:5, s. 508-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives:The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI).Methods:We measured markers of amyloid pathology (CSF -amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [F-18]-fluorodeoxyglucose-PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A- and N+/N- based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A-N+ cases.Results:The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A-N-, A+N-, SNAP, and A+N+, respectively; the proportion of APOE epsilon 4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N- and A+N+ groups (p 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A-N-, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N- patients did not (hazard ratio = 1.13, p = 0.771). In A+N- and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073).Conclusions:Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.
  •  
3.
  •  
4.
  • Ossenkoppele, R., et al. (författare)
  • Cerebrospinal fluid biomarkers and cerebral atrophy in distinct clinical variants of probable Alzheimer's disease
  • 2015
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 36:8, s. 2340-2347
  • Tidskriftsartikel (refereegranskat)abstract
    • Different clinical variants of probable Alzheimer's disease (AD) share underlying plaques and tangles but show distinct atrophy patterns. We included 52 posterior cortical atrophy, 29 logopenic variant primary progressive aphasia, 53 early-onset and 42 late-onset AD patients, selected for abnormal cerebrospinal fluid (CSF) eamyloid-beta(42), with CSF and magnetic resonance imaging data available. Bootstrapping revealed no differences in the prevalence of abnormal CSF total-tau and phosphorylated-tau between probable AD variants (range total-tau: 84.9%-92.3%, phosphorylated-tau: 79.2%-93.1%, p > 0.05). Voxelwise linear regressions showed various relationships between lower CSF-A beta(42) and syndrome-specific atrophy, involving precuneus, posterior cingulate, and medial temporal lobe in early-onset AD, occipital cortex and middle temporal gyrus in posterior cortical atrophy; anterior cingulate, insular cortex and precentral gyrus (left > right) in logopenic variant primary progressive aphasia; and medial temporal lobe, thalamus, and temporal pole in late-onset AD (all at p < 0.001 uncorrected). In contrast, CSF-tau was not related to gray matter atrophy in any group. Our findings suggest that lower CSF eamyloid-beta(42) - and not increased total-tau and phosphorylated-tau - relates to reduced gray matter volumes, mostly in regions that are typically atrophied in distinct clinical variants of probable AD. (C) 2015 Elsevier Inc. All rights reserved.
  •  
5.
  • Salvado, G., et al. (författare)
  • The protective gene dose effect of the APOE epsilon 2 allele on gray matter volume in cognitively unimpaired individuals
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:7, s. 1383-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Harboring two copies of the apolipoprotein E (APOE) epsilon 2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. Methods: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired epsilon 2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of epsilon 2 genotypic groups were compared to each other and to the reference group (APOE epsilon 3/epsilon 3). Results: Carrying at least one epsilon 2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE epsilon 2 homozygotes, but not APOE epsilon 2 heterozygotes, showed larger GM volumes in areas related to successful aging. Discussion: In addition to the known resistance against amyloid-beta deposition, the larger GM volumes in key brain regions may confer APOE epsilon 2 homozygotes additional protection against AD-related cognitive decline.
  •  
6.
  • Wolters, E. E., et al. (författare)
  • Tau PET and relative cerebral blood flow in dementia with Lewy bodies : A PET study
  • 2020
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Alpha-synuclein often co-occurs with Alzheimer's disease (AD) pathology in Dementia with Lewy Bodies (DLB). From a dynamic [18F]flortaucipir PET scan we derived measures of both tau binding and relative cerebral blood flow (rCBF). We tested whether regional tau binding or rCBF differed between DLB patients and AD patients and controls and examined their association with clinical characteristics of DLB. Methods: Eighteen patients with probable DLB, 65 AD patients and 50 controls underwent a dynamic 130-minute [18F]flortaucipir PET scan. DLB patients with positive biomarkers for AD based on cerebrospinal fluid or amyloid PET were considered as DLB with AD pathology (DLB-AD+). Receptor parametric mapping (cerebellar gray matter reference region) was used to extract regional binding potential (BPND) and R1, reflecting (AD-specific) tau pathology and rCBF, respectively. First, we performed regional comparisons of [18F]flortaucipir BPND and R1 between diagnostic groups. In DLB patients only, we performed regression analyses between regional [18F]flortaucipir BPND, R1 and performance on ten neuropsychological tests. Results: Regional [18F]flortaucipir BPND in DLB was comparable with tau binding in controls (p > 0.05). Subtle higher tau binding was observed in DLB-AD+ compared to DLB-AD- in the medial temporal and parietal lobe (both p < 0.05). Occipital and lateral parietal R1 was lower in DLB compared to AD and controls (all p < 0.01). Lower frontal R1 was associated with impaired performance on digit span forward (standardized beta, stβ = 0.72) and category fluency (stβ = 0.69) tests. Lower parietal R1 was related to lower delayed (stβ = 0.50) and immediate (stβ = 0.48) recall, VOSP number location (stβ = 0.70) and fragmented letters (stβ = 0.59) scores. Lower occipital R1 was associated to worse performance on VOSP fragmented letters (stβ = 0.61), all p < 0.05. Conclusion: The amount of tau binding in DLB was minimal and did not differ from controls. However, there were DLB-specific occipital and lateral parietal relative cerebral blood flow reductions compared to both controls and AD patients. Regional rCBF, but not tau binding, was related to cognitive impairment. This indicates that assessment of rCBF may give more insight into disease mechanisms in DLB than tau PET.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy