SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barnabe Heider Fanie) "

Sökning: WFRF:(Barnabe Heider Fanie)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergmann, Olaf, et al. (författare)
  • Evidence for Cardiomyocyte Renewal in Humans
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 324:5923, s. 98-102
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 25 to 0.45% at the age of 75. Fewer than 50% of cardiomyocytes are exchanged during a normal life span. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work toward the development of therapeutic strategies aimed at stimulating this process in cardiac pathologies.
  •  
2.
  • Bergmann, Olaf, et al. (författare)
  • Turnover of Human Cardiomyocytes
  • 2008
  • Ingår i: Circulation Research. - 0009-7330. ; 103:12, s. 1494-1495
  • Konferensbidrag (refereegranskat)
  •  
3.
  • Carlen, Marie, et al. (författare)
  • Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke
  • 2009
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1546-1726 .- 1097-6256. ; 12:3, s. 259-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling. Inhibition of this pathway in uninjured animals allowed ependymal cells to enter the cell cycle and produce olfactory bulb neurons, whereas forced Notch signaling was sufficient to block the ependymal cell response to stroke. Ependymal cells were depleted by stroke and failed to self-renew sufficiently to maintain their own population. Thus, although ependymal cells act as primary cells in the neural lineage to produce neurons and glial cells after stroke, they do not fulfill defining criteria for stem cells under these conditions and instead serve as a reservoir that is recruited by injury.
  •  
4.
  • Devaraju, Karthikeyan, et al. (författare)
  • FoxJ1-expressing cells contribute to neurogenesis in forebrain of adult rats: Evidence from in vivo electroporation combined with piggyBac transposon.
  • 2013
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 319:18, s. 2790-2800
  • Tidskriftsartikel (refereegranskat)abstract
    • Ependymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb. The distribution and progeny of FoxJ1-expressing cells in rat forebrain are unknown. Here we show using immunohistochemistry that the overall majority of FoxJ1-expressing cells in the lateral ventricular wall of adult rats are ependymal cells with a minor population being astrocytes. To allow for long-term fate mapping of FoxJ1-derived cells, we used the piggyBac system for in vivo gene transfer with electroporation. Using this method, we found that FoxJ1-expressing cells, presumably the astrocytes, give rise to neuroblasts and mature neurons in the olfactory bulb both in intact and stroke-damaged brain of adult rats. No significant contribution of FoxJ1-derived cells to stroke-induced striatal neurogenesis was detected. These data indicate that in the adult rat brain, FoxJ1-expressing cells contribute to the formation of new neurons in the olfactory bulb but are not involved in the cellular repair after stroke.
  •  
5.
  • Stenudd, Moa, et al. (författare)
  • Identification of a discrete subpopulation of spinal cord ependymal cells with neural stem cell properties
  • 2022
  • Ingår i: Cell Reports. - : CELL PRESS. - 2211-1247. ; 38:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinal cord ependymal cells display neural stem cell properties in vitro and generate scar-forming astrocytes and remyelinating oligodendrocytes after injury. We report that ependymal cells are functionally heterogeneous and identify a small subpopulation (8% of ependymal cells and 0.1% of all cells in a spinal cord segment), which we denote ependymal A (EpA) cells, that accounts for the in vitro stem cell potential in the adult spinal cord. After spinal cord injury, EpA cells undergo self-renewing cell division as they give rise to differentiated progeny. Single-cell transcriptome analysis revealed a loss of ependymal cell gene expression programs as EpA cells gained signaling entropy and dedifferentiated to a stem-cell-like transcriptional state after an injury. We conclude that EpA cells are highly differentiated cells that can revert to a stem cell state and constitute a therapeutic target for spinal cord repair.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy