SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baron S.) ;mspu:(conferencepaper)"

Sökning: WFRF:(Baron S.) > Konferensbidrag

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marconi, A., et al. (författare)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
2.
  • Åkesson, Torsten, et al. (författare)
  • ATLAS Transition Radiation Tracker test-beam results
  • 2004
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 522:1-2, s. 50-55
  • Konferensbidrag (refereegranskat)abstract
    • Several prototypes of the Transition Radiation Tracker for the ATLAS experiment at the LHC have been built and tested at the CERN SPS accelerator. Results from detailed studies of the straw-tube hit registration efficiency and drift-time measurements and of the pion and electron spectra without and with radiators are presented.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Shea, T. J., et al. (författare)
  • Overview and status of diagnostics for the ESS project
  • 2018
  • Ingår i: Proceedings of the 6th International Beam Instrumentation Conference, IBIC 2017. - 9783954501922 ; , s. 8-15
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source, now under construction in Lund, Sweden, aims to be the world's most powerful pulsed neutron scattering facility. Driving the neutron source is a 5 MW superconducting proton linear accelerator operating at 4 percent beam duty factor and 14 Hz repetition rate. Nineteen partner institutions from across Europe are working with the Accelerator Division in Lund to design and construct the accelerator. The suite of accelerator instrumentation consists of over 20 unique system types developed by over 20 partners and collaborators. Although the organizational complexity presents challenges, it also provides the vast capabilities required to achieve the technical goals. At this time, the beam instrumentation team is in transition, completing the design phase while scaling up to the deployment phase. Commissioning of the ion source has commenced in Catania, preparations for installation on the Lund site are ramping up, and basic R&D on target instrumentation continues. Beam commissioning results from the systems immediately following the ion source will be presented, along with technical highlights and status of the many remaining instrumentation systems.
  •  
10.
  • Baron, P., et al. (författare)
  • Measurement of stratospheric and mesospheric winds with a submillimeter wave limb sounder: results from JEM/SMILES and simulation study for SMILES-2
  • 2015
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9781628418491 ; 9639, s. Article no. 96390N-
  • Konferensbidrag (refereegranskat)abstract
    • Satellite missions for measuring winds in the troposphere and thermosphere will be launched in a near future. There is no plan to observe winds in the altitude range between 30-90 km, though middle atmospheric winds are recognized as an essential parameter in various atmospheric research areas. Sub-millimetre limb sounders have the capability to fill this altitude gap. In this paper, we summarize the wind retrievals obtained from the Japanese Superconducting Submillimeter Wave Limb Emission Sounder (SMILES) which operated from the International Space Station between September 2009 and April 2010. The results illustrate the potential of such instruments to measure winds. They also show the need of improving the wind representation in the models in the Tropics, and globally in the mesosphere. A wind measurement sensitivity study has been conducted for its successor, SMILES-2, which is being studied in Japan. If it is realized, sub-millimeter and terahertz molecular lines suitable to determine line-of-sight winds will be measured. It is shown that with the current instrument definition, line-of-sight winds can be observed from 20 km up to more than 160 km. Winds can be retrieved with a precision better than 5 m s(-1) and a vertical resolution of 2-3 km between 35-90 km. Above 90 km, the precision is better than 10 m s(-1) with a vertical resolution of 3-5 km. Measurements can be performed day and night with a similar sensitivity. Requirements on observation parameters such as the antenna size, the satellite altitude are discussed. An alternative setting for the spectral bands is examined. The new setting is compatible with the general scientific objectives of the mission and the instrument design. It allows to improve the wind measurement sensitivity between 35 to 90 km by a factor 2. It is also shown that retrievals can be performed with a vertical resolution of 1 km and a precision of 5-10 m s(-1) between 50 and 90 km. RAGAM A, 1953, PHYSICAL REVIEW, V92, P1448
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy