SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baumjohann W.) ;hsvcat:3"

Sökning: WFRF:(Baumjohann W.) > Medicin och hälsovetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  • Osborn, H. P., et al. (författare)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
3.
  • Van Grootel, V., et al. (författare)
  • A search for transiting planets around hot subdwarfs: I. Methods and performance tests on light curves from Kepler, K2, TESS, and CHEOPS
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hot subdwarfs experienced strong mass loss on the red giant branch (RGB) and are now hot and small He-burning objects. These stars constitute excellent opportunities for addressing the question of the evolution of exoplanetary systems directly after the RGB phase of evolution. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based telescopes (Kepler, K2, TESS, and CHEOPS) with our custom-made pipeline SHERLOCK in order to determine the occurrence rate of planets around these stars as a function of orbital period and planetary radius. We also aim to determine whether planets that were previously engulfed in the envelope of their red giant host star can survive, even partially, as a planetary remnant. Methods. For this first paper, we performed injection-and-recovery tests of synthetic transits for a selection of representative Kepler, K2, and TESS light curves to determine which transiting bodies in terms of object radius and orbital period we will be able to detect with our tools. We also provide estimates for CHEOPS data, which we analyzed with the pycheops package. Results. Transiting objects with a radius ≤ 1.0 R⊕ can be detected in most of the Kepler, K2, and CHEOPS targets for the shortest orbital periods (1 d and shorter), reaching values as low as ∼0.3 R⊕ in the best cases. Sub-Earth-sized bodies are only reached for the brightest TESS targets and for those that were observed in a significant number of sectors. We also give a series of representative results for larger planets at greater distances, which strongly depend on the target magnitude and on the length and quality of the data. Conclusions. The TESS sample will provide the most important statistics for the global aim of measuring the planet occurrence rate around hot subdwarfs. The Kepler, K2, and CHEOPS data will allow us to search for planetary remnants, that is, very close and small (possibly disintegrating) objects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy