SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beech Jason P.) ;mspu:(conferencepaper)"

Sökning: WFRF:(Beech Jason P.) > Konferensbidrag

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beech, Jason P., et al. (författare)
  • Morphology-based sorting-blood cells and parasites
  • 2010
  • Ingår i: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010. - 9781618390622 ; 2, s. 1343-1345
  • Konferensbidrag (refereegranskat)abstract
    • Morphology represents a hitherto unexploited source of specificity in microfluidic particle separation and may serve as the basis for label-free particle fractionation. There is a wealth of morphological changes in blood cells due to a wide range of clinical conditions, diseases, medication and other factors. Also, blood-borne parasites differ in morphology from blood cells. We present the use of Deterministic Lateral Displacement to create a chip-based, label-free diagnostic tool, capable of harvesting some of the wealth of information locked away in red blood cell morphology. We also use the device to separate the parasites that cause sleeping sickness from blood.
  •  
2.
  • Holm, Stefan H., et al. (författare)
  • A high-throughput deterministic lateral displacement device for rapid and sensitive field-diagnosis of sleeping sickness
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - 9780979806452 ; , s. 530-532
  • Konferensbidrag (refereegranskat)abstract
    • We present a simple and rapid microfluidic device capable of extracting and concentrating the parasite causing the fatal disease sleeping sickness (SS) from blood. The device is based on deterministic lateral displacement (DLD) and constructed with a single inlet with flow induced by an ordinary syringe. The simplicity is crucial as the device is intended for use in the resource depraved areas where the disease is endemic. With only one inlet an intricate design with multiple depths has been utilized to create a cell free stream from the blood plasma into which the parasites are forced and subsequently collected in a detection region. In order to maximize the sample volume up to 10 device layers were stacked on top of each other which resulted in a throughput of ∼10 μL/min. This allowed for an approximate time per test of below 15 min.
  •  
3.
  • Holm, Stefan H., et al. (författare)
  • Multiple depths in a deterministic lateral displacement device for field-diagnosis of sleeping-sickness
  • 2011
  • Ingår i: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011. - 9781618395955 ; 1, s. 527-529
  • Konferensbidrag (refereegranskat)abstract
    • We present a simple and inexpensive device capable of extracting and concentrating the parasite causing sleeping sickness from blood. The device is aimed at being used in rural resource depraved areas where the disease is endemic; therefore simplicity is of paramount importance. The device is based on deterministic lateral displacement with a single inlet and flow induced by a syringe. Through an intricate design with multiple depths, a cell free stream is created from the blood plasma into which the parasites are guided and subsequently collected in a dedicated reservoir for observation.
  •  
4.
  • Akbari, Elham, et al. (författare)
  • SEPARATION OF CLUSTERS OF GROUP A STREPTOCOCCI USING DETERMINISTIC LATERAL DISPLACEMENT
  • 2021
  • Ingår i: MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9781733419031 ; , s. 1201-1202
  • Konferensbidrag (refereegranskat)abstract
    • Differences in morphologies of bacteria and bacteria clusters are known to influence their pathogenicity. However, it is difficult to separate cells and cell clusters based on morphology using standard cell biological methods, making studies of the underlying mechanisms difficult. Here we report a simple label-free method for the continuous separation of clusters of group A streptococci, based on cluster size and morphology, using Deterministic Lateral Displacement (DLD). In general, this opens up for the generation of cell populations with heterogenicity in cluster size and physical properties.
  •  
5.
  • Akbari, Elham, et al. (författare)
  • SEPARATION OF SINGLETS AND CLUSTERS OF GROUP A STREPTOCOCCI USING DETERMINISTIC LATERAL DISPLACEMENT AND FILTER SONICATION
  • 2022
  • Ingår i: MicroTAS 2022 - 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9781733419048 ; , s. 306-307
  • Konferensbidrag (refereegranskat)abstract
    • Differences in morphologies of bacteria and bacteria clusters are thought to contribute to their virulence and colonization. However, the conventional standard cell biological methods cannot separate bacteria and bacteria clusters based on their morphologies and sizes, making studies of the underlying mechanisms difficult. Here we report a simple label-free method for the continuous separation of singlets and clusters, of group A streptococci, based on their size and morphology, using Deterministic Lateral Displacement and filter-sonication. In general, this opens up for the generation of cell populations with heterogenicity in cluster size and physical properties.
  •  
6.
  • Beech, Jason P., et al. (författare)
  • Capillary driven separation on patterned surfaces
  • 2009
  • Ingår i: Proceedings of Conference, MicroTAS 2009 - The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9780979806421 ; , s. 785-787
  • Konferensbidrag (refereegranskat)abstract
    • Deterministic lateral displacement (DLD) is a powerful bimodal separation scheme [1] based on fluid flow through regular obstacle arrays that in its basic embodiment sends suspended particles in two different directions as a function of size. We show that without the need to seal devices and without the need for fluidic connections or pumps, particle separation can be achieved by the passive flow of a sample over a patterned surface. Risk of clogging is minimized by the movement of large particles above the obstacle array. Suitable application areas include blood fractionation and analysis of drinking water. 0
  •  
7.
  • Beech, Jason P., et al. (författare)
  • Cell morphology and deformability in deterministic lateral displacement devices
  • 2011
  • Ingår i: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011. - 9781618395955 ; 2, s. 1355-1357
  • Konferensbidrag (refereegranskat)abstract
    • Deterministic Lateral Displacement (DLD) devices have been used to separate particles based on size [1] and shape [2]. Here we show how DLD devices can also be used to separate particles based on their ability to deform under shear forces. Varying experimental conditions allows us to vary the relative contributions of size, morphology and deformability. The ability to distinguish between cells based on deformability with high resolution and throughput, in cheap and simple devices, could find highly interesting and relevant applications, for example in the detection of circulating tumor cells or malaria-infected blood cells.
  •  
8.
  • Beech, Jason P., et al. (författare)
  • Electrokinetic wall effect mechanisms and applications
  • 2020
  • Ingår i: MicroTAS 2020 - 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9781733419017 ; , s. 42-43
  • Konferensbidrag (refereegranskat)abstract
    • Under the application of longitudinal electric fields in microchannels, microparticles experience lift forces that push them away from the channel walls and affect their trajectories. At high frequencies (>100KHz) the dielectrophoretic forces dominate and are well understood but at lower frequencies there is little agreement as to the exact nature of the forces, how they are generated and how they vary due to the many different experimental conditions that are used in microfluidics devices. Here we present an experimental study of these mechanisms.
  •  
9.
  • Beech, Jason P., et al. (författare)
  • Gravitationally driven deterministic lateral displacement devices
  • 2009
  • Ingår i: Proceedings of Conference, MicroTAS 2009 - The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - 9780979806421 ; , s. 779-781
  • Konferensbidrag (refereegranskat)abstract
    • Deterministic lateral displacement (DLD) is a powerful bimodal separation scheme [1] based on regular obstacle arrays that in its basic embodiment sends particles in two different directions as a function of size. We add functionality to the technique by including gravitational forces, as a perturbation to particles transported by fluid flow, and as a way of transporting the particles through a stationary fluid.
  •  
10.
  • Beech, Jason P., et al. (författare)
  • Sample preparation for single-cell whole chromosome analysis
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - 9780979806452 ; , s. 998-999
  • Konferensbidrag (refereegranskat)abstract
    • In this work we present an integrated system for whole chromosome analysis of single bacterium. Using whole genome barcoding techniques, which offer direct and rapid microscopic visualization of the entire genome in one field-of-view, we aim to rapidly identify individual bacterium. We are developing our device to achieve the crucial, and difficult process of isolating a bacterium, removing the DNA in one piece and transferring it to a nano-channel for visualisation. In order to achieve control over the bacteria we encapsulate them in agarose, using flow focusing. The encapsulated bacteria can then be transported in microchannels to proximity with the nanochannels and then chemically lysis can be performed. Following lysis the intact genome can be extracted and transferred to the meandering nanochannel for analysis. We believe this device holds the potential to significantly decrease analysis times for single cell, whole genome analysis with the potential of opening up for automated, high-throughput genome analysis in microfluidic systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy