SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bell Jerold) ;pers:(Breen Matthew)"

Sökning: WFRF:(Bell Jerold) > Breen Matthew

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, Rachael, et al. (författare)
  • Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas
  • 2009
  • Ingår i: Chromosome Research. - : Springer Science and Business Media LLC. - 0967-3849 .- 1573-6849. ; 17:8, s. 987-1000
  • Tidskriftsartikel (refereegranskat)abstract
    • Injection-site-associated sarcomas (ISAS), commonly arising at the site of routine vaccine administration, afflict as many as 22,000 domestic cats annually in the USA. These tumors are typically more aggressive and prone to recurrence than spontaneous sarcomas (non-ISAS), generally receiving a poorer long-term prognosis and warranting a more aggressive therapeutic approach. Although certain clinical and histological factors are highly suggestive of ISAS, timely diagnosis and optimal clinical management may be hindered by the absence of definitive markers that can distinguish between tumors with underlying injection-related etiology and their spontaneous counterpart. Specific nonrandom chromosome copy number aberrations (CNAs) have been associated with the clinical behavior of a vast spectrum of human tumors, providing an extensive resource of potential diagnostic and prognostic biomarkers. Although similar principles are now being applied with great success in other species, their relevance to feline molecular oncology has not yet been investigated in any detail. We report the construction of a genomic microarray platform for detection of recurrent CNAs in feline tumors through cytogenetic assignment of 210 large-insert DNA clones selected at intervals of approximately 15 Mb from the feline genome sequence assembly. Microarray-based profiling of 19 ISAS and 27 non-ISAS cases identified an extensive range of genomic imbalances that were highly recurrent throughout the combined panel of 46 sarcomas. Deletions of two specific regions were significantly associated with the non-ISAS phenotype. Further characterization of these regions may ultimately permit molecular distinction between ISAS and non-ISAS, as a tool for predicting tumor behavior and prognosis, as well as refining means for therapeutic intervention.
  •  
2.
  • Thomas, Rachael, et al. (författare)
  • Refining tumor-associated aneuploidy through 'genomic recoding' of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas
  • 2011
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 52:7, s. 1321-1335
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of the genomic regions most intimately associated with non-Hodgkin lymphoma (NHL) pathogenesis is confounded by the genetic heterogeneity of human populations. We hypothesize that the restricted genetic variation of purebred dogs, combined with the contrasting architecture of the human and canine karyotypes, will increase the penetrance of fundamental NHL-associated chromosomal aberrations in both species. We surveyed non-random aneuploidy in 150 canine NHL cases, revealing limited genomic instability compared to their human counterparts and no evidence for CDKN2A/B deletion in canine B-cell NHL. 'Genomic recoding' of canine NHL data into a 'virtual human' chromosome format showed remarkably few regions of copy number aberration (CNA) shared between both species, restricted to regions of dog chromosomes 13 and 31, and human chromosomes 8 and 21. Our data suggest that gene discovery in NHL may be enhanced through comparative studies exploiting the less complex association between CNAs and tumor pathogenesis in canine patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy