SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellomo Claudia) "

Sökning: WFRF:(Bellomo Claudia)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arun, K. G., et al. (författare)
  • New horizons for fundamental physics with LISA
  • 2022
  • Ingår i: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351 .- 2367-3613. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
  •  
2.
  •  
3.
  • Bellomo, Claudia, et al. (författare)
  • Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma
  • 2018
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 25:5, s. 885-903
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the complexity of changes in differentiation and cell survival in hepatocellular carcinoma (HCC) is essential for the design of new diagnostic tools and therapeutic modalities. In this context, we have analyzed the crosstalk between transforming growth factor β (TGFβ) and liver X receptor α (LXRα) pathways. TGFβ is known to promote cytostatic and pro-apoptotic responses in HCC, and to facilitate mesenchymal differentiation. We here demonstrate that stimulation of the nuclear LXRα receptor system by physiological and clinically useful agonists controls the HCC response to TGFβ. Specifically, LXRα activation antagonizes the mesenchymal, reactive oxygen species and pro-apoptotic responses to TGFβ and the mesenchymal transcription factor Snail mediates this crosstalk. In contrast, LXRα activation and TGFβ cooperate in enforcing cytostasis in HCC, which preserves their epithelial features. LXRα influences Snail expression transcriptionally, acting on the Snail promoter. These findings propose that clinically used LXR agonists may find further application to the treatment of aggressive, mesenchymal HCCs, whose progression is chronically dependent on autocrine or paracrine TGFβ.
  •  
4.
  •  
5.
  • Bellomo, Claudia (författare)
  • TGFβ and LXR signaling in hepatocellular carcinoma
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hepatocellular carcinoma (HCC) is one of the most prevalent cancer types in the Western world and in the Asia-pacific regions, with its incidence expected to rise up to 22 million cases till 2020. Hepatocellular carcinoma etiology is mainly due to hepatitis B (HBV) and hepatitis C (HCV) infections, and to a lesser extent it is determined by the development of alcohol-driven cirrhosis and non-alcoholic steatohepatitis (NASH). Furthermore, HCC is characterized by a high mortality rate, with poor prognostic expectance and limited therapeutic options currently available in the clinics.Transforming growth factor beta (TGFβ) is a pleiotropic cytokine with a janus-role in HCC and in other malignancies. TGFβ can in fact elicit either tumor-suppressive and tumor- promoting effects depending on tumor stage, microenvironmental and immunological cues. In HCC specifically, TGFβ determines cytostasis and cellular senescence during the first stages of tumor development, while it enhances HCC malignancy and progression in the later stages due to increased invasiveness, acquired resistance to cytostatic actions and tumor immunotolerance.Liver X receptors (LXRα/NR1H3 and LXRβ/NR1H2) are transcription factors of the nuclear hormone receptor family, which play an important role in oxysterol metabolism and reverse- cholesterol transport to the liver. Their involvement in malignancies has been studied so far to a limited extend, with evidence of both tumor-suppressive -via cytostatic mechanisms- and tumor- immunotolerance activities. Moreover, the potential crosstalk of LXR and TGFβ pathways has not been yet unraveled in the context of hepatocellular carcinoma.We have described (Paper I) a high-content imaging platform for the screening of small molecules able to revert the TGFβ-induced epithelial to mesenchymal transition (EMT) in human keratinocytes. This screening allowed us to identify LXR agonists as epithelial plasticity modulators in established terminally differentiated and mouse embryonic fibroblast, as well as in epithelial and mesenchymal HCC cell lines.We have identified (Paper II) the transcription factor SNAI1 (Snail) as the mediator of the crosstalk between TGFβ and LXRα pathways in epithelial and mesenchymal HCC cell models. LXRα activation diminishes the transcriptional induction of SNAI1 by TGFβ, thus antagonizing the induction of mesenchymal features and the production of reactive oxygen species by TGFβ. However, we have unraveled that LXRα and TGFβ signaling still positively interact in increasing cytostasis in HCC, in order to preserve liver epithelial features.We have described (Paper III) that LXRα activation counteracts the transcriptional induction of α smooth muscle actin (αSMA), a major hallmark of fibroblast activation, elicited by TGFβ in patient-derived primary liver fibroblasts.In conclusion, we herein report that the signaling crosstalk between TGFβ and LXRα pathways results in antagonistic effects either on parenchymal and fibroblast cell lines representative of the HCC disease, suggesting the potential future application of LXR agonists as clinical therapeutic options.
  •  
6.
  • Bellomo, Claudia, et al. (författare)
  • Transforming growth factor beta as regulator of cancer stemness and metastasis
  • 2016
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 115:7, s. 761-769
  • Forskningsöversikt (refereegranskat)abstract
    • Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor beta (TGF beta), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGF beta on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGF beta.
  •  
7.
  • Caja, Laia Puigsubira, et al. (författare)
  • Transforming growth factor beta and bone morphogenetic protein actions in brain tumors
  • 2015
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 589:14, s. 1588-1597
  • Forskningsöversikt (refereegranskat)abstract
    • Members of the transforming growth factor beta (TGF-beta) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGF beta and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-beta s associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-beta s and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-beta and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
  •  
8.
  •  
9.
  • Carthy, Jon M., et al. (författare)
  • Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor beta (TGF-beta)-induced epithelial-mesenchymal transition. In addition to TGF-beta receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked alpha-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-beta-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-beta-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer.
  •  
10.
  • Garcia-Gomez, Pedro, et al. (författare)
  • NOX4 regulates TGF beta-induced proliferation and self-renewal in glioblastoma stem cells
  • 2022
  • Ingår i: Molecular Oncology. - : John Wiley & Sons. - 1574-7891 .- 1878-0261. ; 16:9, s. 1891-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Y Glioblastoma (GBM) is the most aggressive and common glioma subtype, with a median survival of 15 months after diagnosis. Current treatments have limited therapeutic efficacy; thus, more effective approaches are needed. The glioblastoma tumoural mass is characterised by a small cellular subpopulation - glioblastoma stem cells (GSCs) - that has been held responsible for glioblastoma initiation, cell invasion, proliferation, relapse and resistance to chemo- and radiotherapy. Targeted therapies against GSCs are crucial, as is understanding the molecular mechanisms that govern the GSCs. Transforming growth factor beta (TGF beta) signalling and reactive oxygen species (ROS) production are known to govern and regulate cancer stem cell biology. Among the differentially expressed genes regulated by TGF beta in a transcriptomic analysis of two different patient-derived GSCs, we found NADPH oxidase 4 (NOX4) as one of the top upregulated genes. Interestingly, when patient tissues were analysed, NOX4 expression was found to be higher in GSCs versus differentiated cells. A functional analysis of the role of NOX4 downstream of TGF beta in several patient-derived GSCs showed that TGF beta does indeed induce NOX4 expression and increases ROS production in a NOX4-dependent manner. NOX4 downstream of TGF beta regulates GSC proliferation, and NOX4 expression is necessary for TGF beta-induced expression of stem cell markers and of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), which in turn controls the cell's antioxidant and metabolic responses. Interestingly, overexpression of NOX4 recapitulates the effects induced by TGF beta in GSCs: enhanced proliferation, stemness and NRF2 expression. In conclusion, this work functionally establishes NOX4 as a key mediator of GSC biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (3)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Moustakas, Aristidis (10)
Morén, Anita (5)
Heldin, Carl-Henrik (5)
Heldin, Carl-Henrik, ... (2)
Vanlandewijck, Micha ... (2)
Sundström, Magnus (1)
visa fler...
Mezheyeuski, Artur (1)
Glimelius, Bengt (1)
Sathyaprakash, B. S. (1)
Martins, C. J. A. P. (1)
Nilsson, Mats (1)
Blas, Diego (1)
de Rham, Claudia (1)
Hees, Aurelien (1)
Lombriser, Lucas (1)
Noller, Johannes (1)
Pappas, George (1)
Pikovski, Igor (1)
Sergijenko, Olga (1)
Shao, Lijing (1)
Sopuerta, Carlos F. (1)
Stergioulas, Nikolao ... (1)
Tolley, Andrew J. (1)
Riotto, Antonio (1)
Escoffier, Stephanie (1)
Isaksson, Anders (1)
Ljungström, Viktor, ... (1)
Micke, Patrick (1)
Sjöblom, Tobias (1)
Zumalacarregui, Migu ... (1)
Berti, Emanuele (1)
Doneva, Daniela (1)
Tamanini, Nicola (1)
Witek, Helvi (1)
Birgisson, Helgi (1)
Arun, K. G. (1)
Belgacem, Enis (1)
Benkel, Robert (1)
Bernard, Laura (1)
Bertone, Gianfranco (1)
Besancon, Marc (1)
Böhmer, Christian G. (1)
Brito, Richard (1)
Calcagni, Gianluca (1)
Cardenas-Avendaño, A ... (1)
Clough, Katy (1)
Crisostomi, Marco (1)
De Luca, Valerio (1)
Ezquiaga, José María (1)
Ferreira, Pedro G. (1)
visa färre...
Lärosäte
Uppsala universitet (12)
Stockholms universitet (2)
Karolinska Institutet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy