SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belting Mattias) ;pers:(Kucharzewska Paulina)"

Sökning: WFRF:(Belting Mattias) > Kucharzewska Paulina

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kucharzewska, Paulina, et al. (författare)
  • Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress.
  • 2013
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 2
  • Forskningsöversikt (refereegranskat)abstract
    • Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.
  •  
3.
  • Kucharzewska, Paulina, et al. (författare)
  • Establishment of heparan sulphate deficient primary endothelial cells from EXT-1(flox/flox) mouse lungs and sprouting aortas.
  • 2010
  • Ingår i: In Vitro Cellular & Developmental Biology - Animal. - : Springer Science and Business Media LLC. - 1071-2690 .- 1543-706X. ; May 4, s. 577-584
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis is a hallmark of expanding tissue e.g. during embryogenesis and wound healing in physiology as well as in diseases such as cancer and atherosclerosis. Key steps of the angiogenic process involve growth factor-mediated stimulation of endothelial cell sprouting and tube formation. Heparan sulphate proteoglycans (HSPGs) have been implicated as important co-receptors of several pro-angiogenic proteins. The importance of HSPGs in physiology was underscored by the finding that knockout of the gene encoding HS polymerase, EXT-1, resulted in early embryonic lethality. Here, we describe the establishment of HS-deficient endothelial cells from sprouting aortas as well as from the lungs of EXT-1(flox/flox) mice. Recombination of the loxP-flanked EXT-1 locus by Cre-expressing adenovirus was demonstrated at the mRNA level. Moreover, depletion of HS polysaccharides was verified by flow cytometry and fluorescence microscopy methodology using phage display-derived anti-HS antibodies. In summary, we provide a genetic model to unravel the functional role of HSPGs specifically in primary endothelial cells during early steps of angiogenesis. Our studies are applicable to most loxP-based transgenic mouse strains, and may thus be of general importance in the angiogenesis field.
  •  
4.
  • Kucharzewska, Paulina, et al. (författare)
  • Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development.
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:18, s. 7312-7317
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM). In vitro hypoxia experiments with glioma cells and studies with patient materials reveal the enrichment in exosomes of hypoxia-regulated mRNAs and proteins (e.g., matrix metalloproteinases, IL-8, PDGFs, caveolin 1, and lysyl oxidase), several of which were associated with poor glioma patient prognosis. We show that exosomes derived from GBM cells grown at hypoxic compared with normoxic conditions are potent inducers of angiogenesis ex vivo and in vitro through phenotypic modulation of endothelial cells. Interestingly, endothelial cells were programmed by GBM cell-derived hypoxic exosomes to secrete several potent growth factors and cytokines and to stimulate pericyte PI3K/AKT signaling activation and migration. Moreover, exosomes derived from hypoxic compared with normoxic conditions showed increased autocrine, promigratory activation of GBM cells. These findings were correlated with significantly enhanced induction by hypoxic compared with normoxic exosomes of tumor vascularization, pericyte vessel coverage, GBM cell proliferation, as well as decreased tumor hypoxia in a mouse xenograft model. We conclude that the proteome and mRNA profiles of exosome vesicles closely reflect the oxygenation status of donor glioma cells and patient tumors, and that the exosomal pathway constitutes a potentially targetable driver of hypoxia-dependent intercellular signaling during tumor development.
  •  
5.
  • Kucharzewska, Paulina, et al. (författare)
  • Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Oncogenetic events and unique phenomena of the tumor microenvironment together induce adaptive metabolic responses that may offer new diagnostic tools and therapeutic targets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal feature of the tumor microenvironment and has been linked to increased tumor aggressiveness as well as resistance to conventional oncological treatments. Previous studies have provided important insights into hypoxia induced changes of the transcriptome and proteome; however, how this translates into changes at the metabolite level remains to be defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein, lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and 126 metabolites were identified and quantified in cells and corresponding media, respectively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or hypoxic (1% O2) conditions. In conjunction, we performed gene array studies with hypoxic and normoxic cells following short and prolonged incubation. We found that levels of several key metabolites varied with the duration of hypoxic stress. In some cases, metabolic changes corresponded with hypoxic regulation of key pathways at the transcriptional level. Our results provide new insights into the metabolic response of glioblastoma cells to hypoxia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms to microenvironmental stress.
  •  
6.
  • Kucharzewska, Paulina, et al. (författare)
  • Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells.
  • 2010
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 316, s. 2683-2691
  • Tidskriftsartikel (refereegranskat)abstract
    • The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by alpha-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.
  •  
7.
  • Kucharzewska, Paulina, et al. (författare)
  • The polyamines regulate endothelial cell survival during hypoxic stress through PI3K/AKT and MCL-1.
  • 2009
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 380:2, s. 413-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia-dependent angiogenesis is an inherent feature of solid tumors, and a better understanding of the molecular mechanisms of hypoxic cell-death should provide additional targets for cancer therapy. Here, we show a novel role of the polyamines in endothelial cell (EC) survival during hypoxia. Polyamine depletion by specific inhibition of ornithine decarboxylase was shown to protect ECs from hypoxia-induced apoptosis. Inhibition of the polyamines resulted in a significant induction of PI3K/AKT and its down-stream target MCL-1, i.e. an anti-apoptotic member of the BCL-2 family. Specific inhibitors of PI3K reversed the decrease of hypoxia-induced apoptosis as well as the induction of MCL-1 in polyamine-deprived cells. Moreover, siRNA-mediated down-regulation of MCL-1 was found to counter-act the protective effect of polyamine inhibition. We conclude that the polyamines regulate hypoxia-induced apoptosis in ECs through PI3K/AKT and MCL-1 dependent pathways. Our results may have important implications for the modulation of hypoxia-driven neovascularization.
  •  
8.
  • Larsson, Anna H, et al. (författare)
  • Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer
  • 2011
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 105:5, s. 666-672
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Podocalyxin-like 1 (PODXL) is a cell-adhesion glycoprotein and stem cell marker that has been associated with an aggressive tumour phenotype and poor prognosis in several forms of cancer. In this study, we investigated the prognostic impact of PODXL expression in colorectal cancer (CRC). METHODS: Using tissue microarrays and immunohistochemistry, PODXL expression was evaluated in 536 incident CRC cases from a prospective, population-based cohort study. Kaplan-Meier analysis and Cox proportional hazards modelling were used to assess the impact of PODXL expression on cancer-specific survival (CSS) and overall survival (OS). RESULTS: High PODXL expression was significantly associated with unfavourable clinicopathological characteristics, a shorter CSS (hazard ratio (HR) = 1.98; 95% confidence interval (CI) 1.38-2.84, P < 0.001) and 5-year OS (HR = 1.85; 95% CI 1.29-2.64, P = 0.001); the latter remaining significant in multivariate analysis (HR = 1.52; 95% CI 1.03-2.25, P = 0.036). In addition, in curatively resected stage III (T1-4, N1-2, M0) patients (n = 122) with tumours with high PODXL expression, a significant benefit from adjuvant chemotherapy was demonstrated (p(interaction) = 0.004 for CSS and 0.015 for 5-year OS in multivariate analysis). CONCLUSION: Podocalyxin-like 1 expression is an independent factor of poor prognosis in CRC. Our results also suggest that PODXL may be a useful marker to stratify patients for adjuvant chemotherapy.
  •  
9.
  • Menard, Julien A., et al. (författare)
  • Metastasis Stimulation by Hypoxia and Acidosis-Induced Extracellular Lipid Uptake Is Mediated by Proteoglycan-Dependent Endocytosis
  • 2016
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 76:16, s. 4828-4840
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia and acidosis are inherent stress factors of the tumor microenvironment and have been linked to increased tumor aggressiveness and treatment resistance. Molecules involved in the adaptive mechanisms that drive stress-induced disease progression constitute interesting candidates of therapeutic intervention. Here, we provide evidence of a novel role of heparan sulfate proteoglycans (HSPG) in the adaptive response of tumor cells to hypoxia and acidosis through increased internalization of lipoproteins, resulting in a lipid-storing phenotype and enhanced tumor-forming capacity. Patient glioblastoma tumors and cells under hypoxic and acidic stress acquired a lipid droplet (LD)-loaded phenotype, and showed an increased recruitment of all major lipoproteins, HDL, LDL, and VLDL. Stress-induced LD accumulation was associated with increased spheroid-forming capacity during reoxygenation in vitro and lung metastatic potential in vivo. On a mechanistic level, we found no apparent effect of hypoxia on HSPGs, whereas lipoprotein receptors (VLDLR and SR-B1) were transiently upregulated by hypoxia. Importantly, however, using pharmacologic and genetic approaches, we show that stress-mediated lipoprotein uptake is highly dependent on intact HSPG expression. The functional relevance of HSPG in the context of tumor cell stress was evidenced by HSPG-dependent lipoprotein cell signaling activation through the ERK/MAPK pathway and by reversal of the LD-loaded phenotype by targeting of HSPGs. We conclude that HSPGs may have an important role in the adaptive response to major stress factors of the tumor microenvironment, with functional consequences on tumor cell signaling and metastatic potential.
  •  
10.
  • Svensson, Katrin, et al. (författare)
  • Chondroitin sulfate expression predicts poor outcome in breast cancer.
  • 2011
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 39, s. 1421-1428
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental studies have established that the sulfated glycosaminoglycans heparan sulfate and chondroitin sulfate act as co-receptors of cytokines and growth factors that drive the malignant cell phenotype and the remodelling of the surrounding tumor stroma. However, the clinical relevance of these studies remains ill-defined. The present study investigates the significance of chondroitin sulfate expression in malignant cells and the stroma, respectively, of tumors from two independent cohorts of breast cancer patients (cohort I: 144 patients, 130 evaluable samples; cohort II: 498 patients, 469 evaluable samples; ER-positive patients ~86% in both cohorts). Kaplan-Meier analysis and Cox proportional hazards modelling were used to assess the relationship between chondroitin sulfate and recurrence-free and overall survival. High chondroitin sulfate expression in malignant cells was shown to predict shorter recurrence-free survival (P=0.007, cohort I; P=0.024, cohort II) and overall survival (cohort I: P=0.044; cohort II: P<0.001) in both cohorts. In multivariate analysis, high chondroitin sulfate in malignant cells was shown to be an independent, predictive factor of poor overall survival (cohort I: hazard ratio 2.28: 95% confidence interval 1.08-4.81, P=0.031; cohort II: hazard ratio 1.71: 95% confidence interval 1.23-2.38, P=0.001). However, chondroitin sulfate in the stroma showed no correlation with known markers of tumor aggressiveness or with clinical outcome in either cohort. Our data suggest that high chondroitin sulfate expression in malignant cells is associated with an adverse outcome in patients with primary breast cancer, supporting the idea of a functional and potentially targetable role of chondroitin sulfate in tumor disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy