SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Belting Mattias) ;pers:(Svensson Katrin)"

Search: WFRF:(Belting Mattias) > Svensson Katrin

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Christianson, Helena, et al. (author)
  • Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity
  • 2013
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:43, s. 17380-17385
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicle (EV)-mediated intercellular transfer of signaling proteins and nucleic acids has recently been implicated in the development of cancer and other pathological conditions; however, the mechanism of EV uptake and how this may be targeted remain as important questions. Here, we provide evidence that heparan sulfate (HS) proteoglycans (PGs; HSPGs) function as internalizing receptors of cancer cell-derived EVs with exosome-like characteristics. Internalized exosomes colocalized with cell-surface HSPGs of the syndecan and glypican type, and exosome uptake was specifically inhibited by free HS chains, whereas closely related chondroitin sulfate had no effect. By using several cell mutants, we provide genetic evidence of a receptor function of HSPG in exosome uptake, which was dependent on intact HS, specifically on the 2-O and N-sulfation groups. Further, enzymatic depletion of cell-surface HSPG or pharmacological inhibition of endogenous PG biosynthesis by xyloside significantly attenuated exosome uptake. We provide biochemical evidence that HSPGs are sorted to and associate with exosomes; however, exosome-associated HSPGs appear to have no direct role in exosome internalization. On a functional level, exosome-induced ERK1/2 signaling activation was attenuated in PG-deficient mutant cells as well as in WT cells treated with xyloside. Importantly, exosome-mediated stimulation of cancer cell migration was significantly reduced in PG-deficient mutant cells, or by treatment of WT cells with heparin or xyloside. We conclude that cancer cell-derived exosomes use HSPGs for their internalization and functional activity, which significantly extends the emerging role of HSPGs as key receptors of macromolecular cargo.
  •  
2.
  • Christianson, Helena, et al. (author)
  • Exosome and microvesicle mediated phene transfer in mammalian cells.
  • 2014
  • In: Seminars in Cancer Biology. - : Elsevier BV. - 1096-3650 .- 1044-579X. ; 28:Apr 23, s. 31-38
  • Research review (peer-reviewed)abstract
    • Extracellular vesicles (EVs), e.g. exosomes and microvesicles, emerge as new signaling organelles in the exchange of information between cells at the paracrine and systemic level. It is clear that these virus like particles carry complex biological information that can elicit a pleiotropic response in recipient cells with potential relevance in physiology as well as in cancer and other pathological conditions. Numerous studies convincingly show that the molecular composition of EVs closely reflects their cell or tissue of origin. Thus, the signaling status of donor cells, more specifically their endosomal compartments, may largely determine the biological output in recipient cells, a process that we then may conceptualize as vesicle mediated phene transfer. Whereas more conventional modes of cell-cell communication mostly depend on extracellular ligand concentration and cell-surface receptor availability, the magnitude of the EV signaling response relies on the capture and uptake by target cells, allowing release of the EV content. Numerous reports point at the intriguing possibility that, among thousands of mRNAs, miRNAs, and proteins, single EV constituents effectuate the biological response, e.g. stimulation of angiogenesis and cancer cell metastasis, in recipient cells; however, we find it conceivable that strategies targeted at general mechanisms of EV function should provide more rational avenues for therapeutic intervention directed at the EV system. Such strategies include manipulation of EV formation in the endolysosomal system, EV stability in the extracellular milieu, and EV entry into target cells. Here, we provide important insights into potential mechanisms of EV transport in mammalian cells and how these may be targeted.
  •  
3.
  • Gardner, Richard Andrew, et al. (author)
  • Synthesis and transfection efficiencies of new lipophilic polyamines
  • 2007
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 1520-4804 .- 0022-2623. ; 50:2, s. 308-318
  • Journal article (peer-reviewed)abstract
    • A homologous series of lipophilic polyamines was synthesized and evaluated for DNA delivery and transfection efficiency. The series contained 1,4-butanediamine, 1,8-octanediamine, 2-[2-(2-amino-ethoxy)-ethoxy]-ethylamine, homospermidine, and homospermine covalently attached via their N-1 terminus to a 3,4-bis(oleyloxy)-benzyl motif. In addition, homospermidine and homospermine were also attached via amide linkers. The homospermidine derivatives (i.e., benzyl tether 25 and benzamide tether 27) showed a 3-fold and 4-fold respective enhancement in delivery of AlexaFluor-488-labeled DNA over the butanediamine analogue 22. Homospermine derivative 26 was shown to inhibit C-14-spermine uptake (IC50 similar to 10 mu M), which implied that 26 is able to compete effectively for polyamine recognition sites on the cell surface. This study demonstrated that the number and position of the positive charges along the polyamine scaffold plays a key role in DNA delivery and in determining the transfection efficiency.
  •  
4.
  •  
5.
  • Kucharzewska, Paulina, et al. (author)
  • Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development.
  • 2013
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:18, s. 7312-7317
  • Journal article (peer-reviewed)abstract
    • Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM). In vitro hypoxia experiments with glioma cells and studies with patient materials reveal the enrichment in exosomes of hypoxia-regulated mRNAs and proteins (e.g., matrix metalloproteinases, IL-8, PDGFs, caveolin 1, and lysyl oxidase), several of which were associated with poor glioma patient prognosis. We show that exosomes derived from GBM cells grown at hypoxic compared with normoxic conditions are potent inducers of angiogenesis ex vivo and in vitro through phenotypic modulation of endothelial cells. Interestingly, endothelial cells were programmed by GBM cell-derived hypoxic exosomes to secrete several potent growth factors and cytokines and to stimulate pericyte PI3K/AKT signaling activation and migration. Moreover, exosomes derived from hypoxic compared with normoxic conditions showed increased autocrine, promigratory activation of GBM cells. These findings were correlated with significantly enhanced induction by hypoxic compared with normoxic exosomes of tumor vascularization, pericyte vessel coverage, GBM cell proliferation, as well as decreased tumor hypoxia in a mouse xenograft model. We conclude that the proteome and mRNA profiles of exosome vesicles closely reflect the oxygenation status of donor glioma cells and patient tumors, and that the exosomal pathway constitutes a potentially targetable driver of hypoxia-dependent intercellular signaling during tumor development.
  •  
6.
  • Kucharzewska, Paulina, et al. (author)
  • Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells.
  • 2010
  • In: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 316, s. 2683-2691
  • Journal article (peer-reviewed)abstract
    • The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by alpha-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.
  •  
7.
  • Kucharzewska, Paulina, et al. (author)
  • The polyamines regulate endothelial cell survival during hypoxic stress through PI3K/AKT and MCL-1.
  • 2009
  • In: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 380:2, s. 413-418
  • Journal article (peer-reviewed)abstract
    • Hypoxia-dependent angiogenesis is an inherent feature of solid tumors, and a better understanding of the molecular mechanisms of hypoxic cell-death should provide additional targets for cancer therapy. Here, we show a novel role of the polyamines in endothelial cell (EC) survival during hypoxia. Polyamine depletion by specific inhibition of ornithine decarboxylase was shown to protect ECs from hypoxia-induced apoptosis. Inhibition of the polyamines resulted in a significant induction of PI3K/AKT and its down-stream target MCL-1, i.e. an anti-apoptotic member of the BCL-2 family. Specific inhibitors of PI3K reversed the decrease of hypoxia-induced apoptosis as well as the induction of MCL-1 in polyamine-deprived cells. Moreover, siRNA-mediated down-regulation of MCL-1 was found to counter-act the protective effect of polyamine inhibition. We conclude that the polyamines regulate hypoxia-induced apoptosis in ECs through PI3K/AKT and MCL-1 dependent pathways. Our results may have important implications for the modulation of hypoxia-driven neovascularization.
  •  
8.
  • Mani, Katrin, et al. (author)
  • HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells.
  • 2007
  • In: Molecular Cancer Therapeutics. - 1538-8514. ; 6:2, s. 782-788
  • Journal article (peer-reviewed)abstract
    • Polyamines are essential for tumor cell growth, and the polyamine pathway represents an attractive target for cancer treatment. Several polyamine transport proteins have been cloned and characterized in bacteria and yeast cells; however, the mechanism of polyamine entry into mammalian cells remains poorly defined, although a role for proteoglycans has been suggested. Here, we show that the HIV-Tat transduction peptide, which is known to enter cells via a proteoglycan-dependent pathway, efficiently inhibits polyamine uptake. Polyamine uptake–deficient mutant cells with intact proteoglycan biosynthesis (CHO MGBG) displayed unperturbed HIV-Tat uptake activity compared with wild-type cells, supporting the notion that HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than a putative downstream transporter. HIV-Tat specifically inhibited growth of human carcinoma cells made dependent on extracellular polyamines by treatment with the polyamine biosynthesis inhibitor {alpha}-difluoromethylornithine; accordingly, the Tat peptide prevented intracellular accumulation of exogenous polyamines. Moreover, combined treatment with {alpha}-difluoromethylornithine and HIV-Tat efficiently blocked tumor growth in an experimental mouse model. We conclude that HIV-Tat transduction domain and polyamines enter cells through a common pathway, which can be used to target polyamine-dependent tumor growth in the treatment of cancer.
  •  
9.
  • Marko-Varga, György, et al. (author)
  • Standardization and Utilization of Biobank Resources in Clinical Protein Sciene with Examples of Emerging Applications
  • 2012
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:11, s. 5124-5134
  • Journal article (peer-reviewed)abstract
    • Biobanks are a major resource to access and measure biological constituents that can be used to monitor the status of health and disease, both in unique individual samples and within populations. Most “omic” activities rely on access to these collections of stored samples to provide the basis for establishing the ranges and frequencies of expression. Furthermore, information about the relative abundance and form of protein constituents found in stored samples provides an important historical index for comparative studies of inherited, epidemic, and developing disease. Standardizations of sample quality, form, and analysis are an important unmet need and requirement for gaining full benefit from collected samples. Coupled to this standard is the provision of annotation describing clinical status and metadata of measurements of clinical phenotype that characterizes the sample. Today we have not yet achieved consensus on how to collect, manage, and build biobank archives in order to reach goals where these efforts are translated into value for the patient. Several initiatives (OBBR, ISBER, BBMRI) that disseminate best practice examples for biobanking are expected to play an important role in ensuring the need to preserve the sample integrity of biosamples stored for periods that reach one or several decades. These developments will be of great value and importance to programs such as the Chromosome Human Protein Project (C-HPP) that will associate protein expression in healthy and disease states with genetic foci along of each of the human chromosomes.
  •  
10.
  • Menard, Julien A., et al. (author)
  • Metastasis Stimulation by Hypoxia and Acidosis-Induced Extracellular Lipid Uptake Is Mediated by Proteoglycan-Dependent Endocytosis
  • 2016
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 76:16, s. 4828-4840
  • Journal article (peer-reviewed)abstract
    • Hypoxia and acidosis are inherent stress factors of the tumor microenvironment and have been linked to increased tumor aggressiveness and treatment resistance. Molecules involved in the adaptive mechanisms that drive stress-induced disease progression constitute interesting candidates of therapeutic intervention. Here, we provide evidence of a novel role of heparan sulfate proteoglycans (HSPG) in the adaptive response of tumor cells to hypoxia and acidosis through increased internalization of lipoproteins, resulting in a lipid-storing phenotype and enhanced tumor-forming capacity. Patient glioblastoma tumors and cells under hypoxic and acidic stress acquired a lipid droplet (LD)-loaded phenotype, and showed an increased recruitment of all major lipoproteins, HDL, LDL, and VLDL. Stress-induced LD accumulation was associated with increased spheroid-forming capacity during reoxygenation in vitro and lung metastatic potential in vivo. On a mechanistic level, we found no apparent effect of hypoxia on HSPGs, whereas lipoprotein receptors (VLDLR and SR-B1) were transiently upregulated by hypoxia. Importantly, however, using pharmacologic and genetic approaches, we show that stress-mediated lipoprotein uptake is highly dependent on intact HSPG expression. The functional relevance of HSPG in the context of tumor cell stress was evidenced by HSPG-dependent lipoprotein cell signaling activation through the ERK/MAPK pathway and by reversal of the LD-loaded phenotype by targeting of HSPGs. We conclude that HSPGs may have an important role in the adaptive response to major stress factors of the tumor microenvironment, with functional consequences on tumor cell signaling and metastatic potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view