SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bengtsson Daniel) ;pers:(Aili Daniel)"

Sökning: WFRF:(Bengtsson Daniel) > Aili Daniel

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Dual action of bacteriocin PLNC8 alpha beta through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation
  • 2017
  • Ingår i: Pathogens and Disease. - : Oxford University Press. - 2049-632X. ; 75:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 alpha beta. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 alpha beta enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 alpha beta efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 alpha beta displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 alpha beta in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
  •  
3.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1-22, β7-34 and β1-20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
  •  
4.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Nanocellulose composite wound dressings for real-time pH wound monitoring
  • 2023
  • Ingår i: Materials Today Bio. - : Elsevier. - 2590-0064. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.
  •  
5.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 30:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.
  •  
6.
  • Fursatz, Marian, et al. (författare)
  • Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine
  • 2018
  • Ingår i: Biomedical Materials. - : Institute of Physics Publishing (IOPP). - 1748-6041 .- 1748-605X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting the beneficial structural and mechanical properties of the material would hence be highly attractive. Here we present methods for functionalization of BC with ε-Poly-L-Lysine (ε-PLL), a non-toxic biopolymer with broad-spectrum antimicrobial activity. Low molecular weight ε-PLL was cross-linked in pristine BC membranes and to carboxymethyl cellulose (CMC) functionalized BC using carbodiimide chemistry. The functionalization of BC with ε-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblasts as compared to native BC. The functionalization had no significant effects on the nanofibrous structure and mechanical properties of the BC. The possibility to functionalize BC with ε-PLL is a promising, green and versatile approach to improve the performance of BC in wound care and other biomedical applications.
  •  
7.
  •  
8.
  • Khalaf, Hazem, et al. (författare)
  • Antibacterial effects of Lactobacillus and bacteriocin PLNC8 alpha beta on the periodontal pathogen Porphyromonas gingivalis
  • 2016
  • Ingår i: BMC Microbiology. - : BIOMED CENTRAL LTD. - 1471-2180. ; 16:188
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 alpha beta on P. gingivalis. Results: Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 alpha beta) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 alpha beta. The antimicrobial activity of PLNC8 alpha beta was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis. Conclusion: Soluble or immobilized PLNC8 alpha beta bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis.
  •  
9.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis
  • 2016
  • Ingår i: BMC Microbiology. - London, United Kingdom : BioMed Central (BMC). - 1471-2180. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αβ on P. gingivalis.Results: Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αβ) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αβ. The antimicrobial activity of PLNC8 αβ was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis.Conclusion: Soluble or immobilized PLNC8 αβ bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis.
  •  
10.
  • Musa, Amani, 1983-, et al. (författare)
  • Plantaricin NC8 alpha beta prevents Staphylococcus aureus-mediated cytotoxicity and inflammatory responses of human keratinocytes
  • 2021
  • Ingår i: Scientific Reports. - : Nature Portfolio. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidrug resistance bacteria constitue an increasing global health problem and the development of novel therapeutic strategies to face this challenge is urgent. Antimicrobial peptides have been proven as potent agents against pathogenic bacteria shown by promising in vitro results. The aim of this study was to characterize the antimicrobial effects of PLNC8 alpha beta on cell signaling pathways and inflammatory responses of human keratinocytes infected with S. aureus. PLNC8 alpha beta did not affect the viability of human keratinocytes but upregulated several cytokines (IL-1 beta, IL-6, CXCL8), MMPs (MMP1, MMP2, MMP9, MMP10) and growth factors (VEGF and PDGF-AA), which are essential in cell regeneration. S. aureus induced the expression of several inflammatory mediators at the gene and protein level and PLNC8 alpha beta was able to significantly suppress these effects. Intracellular signaling events involved primarily c-Jun via JNK, c-Fos and NF kappa B, suggesting their essential role in the initiation of inflammatory responses in human keratinocytes. PLNC8 alpha beta was shown to modulate early keratinocyte responses, without affecting their viability. The peptides have high selectivity towards S. aureus and were efficient at eliminating the bacteria and counteracting their inflammatory and cytotoxic effects, alone and in combination with low concentrations of gentamicin. We propose that PLNC8 alpha beta may be developed to combat infections caused by Staphylococcus spp.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
annan publikation (3)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Bengtsson, Torbjörn, ... (16)
Khalaf, Hazem, 1981- (13)
Selegård, Robert, 19 ... (6)
Aili, Daniel, 1977- (5)
Hultenby, Kjell (5)
visa fler...
Selegård, Robert (4)
Skog, Mårten (4)
Musa, Amani, 1983- (4)
Sivlér, Petter (4)
Palm, Eleonor, 1980- (3)
Svärd, Anna (3)
Nayeri, Fariba (2)
Söderquist, Bo, 1955 ... (2)
Hellmark, Bengt, 197 ... (2)
Björk, Emma, 1981- (2)
Scherbak, Nikolai, 1 ... (2)
Aronsson, Christophe ... (2)
Zattarin, Elisa, Dok ... (2)
Utterström, Johanna (2)
Eskilson, Olof, 1992 ... (2)
Vagin, Mikhail (1)
Scherbak, Nikolai (1)
Berglund, Linn (1)
Altimiras, Jordi (1)
Sepulveda, Borja (1)
Oksman, Kristiina (1)
Wickham, Abeni (1)
Greczynski, Grzegorz (1)
Melik, Wessam, 1973- (1)
Odén, Magnus, 1965- (1)
Neilands, Jessica (1)
Svensäter, Gunnel, 1 ... (1)
Zhang, Boxi (1)
Lindström, S. B. (1)
Junker, Johan, 1980- (1)
Dånmark, Staffan (1)
Tran, Pham Tue Hung, ... (1)
Hinkula, Jorma, 1958 ... (1)
Sotra, Zeljana (1)
Rinklake, Ivana (1)
Rakar, Jonathan, 198 ... (1)
Ericson, Marica B, 1 ... (1)
Wiman, Emanuel (1)
Starkenberg, Annika, ... (1)
Skallberg, Andreas (1)
Khalaf, Hazem (1)
James, Jeemol (1)
Martinsson, Erik, 19 ... (1)
Hanna, Kristina (1)
visa färre...
Lärosäte
Örebro universitet (16)
Linköpings universitet (13)
Karolinska Institutet (3)
Göteborgs universitet (1)
Luleå tekniska universitet (1)
Malmö universitet (1)
visa fler...
Mittuniversitetet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (6)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy