SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergemann M.) ;mspu:(article)"

Sökning: WFRF:(Bergemann M.) > Tidskriftsartikel

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
3.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
4.
  • Lanzafame, A. C., et al. (författare)
  • Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible,different methods were used to derive raw parameters (e. g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e. g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the rho Oph, Cha I, NGC2264, gamma Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be approximate to 120 K rms in T-eff, approximate to 0.3 dex rms in log g, and approximate to 0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
  •  
5.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
  •  
6.
  •  
7.
  • da Silva, R., et al. (författare)
  • Oxygen, sulfur, and iron radial abundance gradients of classical Cepheids across the Galactic thin disk
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 678, s. A195-A195
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Classical Cepheids (CCs) are solid distance indicators and tracers of young stellar populations. Dating back to the beginning of the 20th century, they have been safely adopted to trace the rotation, kinematics, and chemical enrichment history of the Galactic thin disk.Aims. The main aim of this investigation is to provide iron, oxygen, and sulfur abundances for the largest and most homogeneous sample of Galactic CCs analyzed so far (1118 spectra of 356 objects). The current sample, containing 70 CCs for which spectroscopic metal abundances are provided for the first time, covers a wide range in galactocentric distances, pulsation modes, and pulsation periods.Methods. Optical high-resolution spectra with a high signal-to-noise ratio that were collected with different spectrographs were adopted to provide homogeneous estimates of the atmospheric parameters (effective temperature, surface gravity, and microturbulent velocity) that are required to determine the abundance. Individual distances were based either on trigonometric parallaxes by the Gaia Data Release 3 (Gaia DR3) or on distances based on near-infrared period-luminosity relations.Results. We found that iron and α-element radial gradients based on CCs display a well-defined change in the slope for galactocentric distances larger than ~12 kpc. We also found that logarithmic regressions account for the variation in [X/H] abundances from the inner to the outer disk. Radial gradients for the same elements, but based on open clusters covering a wide range in cluster ages, display similar trends. This means that the flattening in the outer disk is an intrinsic feature of the radial gradients because it is independent of age. Empirical evidence indicates that the S radial gradient is steeper than the Fe radial gradient. The difference in the slope is a factor of two in the linear fit (−0.081 vs. −0.041 dex kpc−1) and changes from −1.62 to −0.91 in the logarithmic distance. Moreover, we found that S (explosive nucleosynthesis) is underabundant on average when compared with O (hydrostatic nucleosynthesis). The difference becomes clearer in the metal-poor regime and for the [O/Fe] and [S/Fe] abundance ratios. We performed a detailed comparison with Galactic chemical evolution models and found that a constant star formation efficiency for galactocentric distances larger than 12 kpc accounts for the flattening observed in both iron and α-elements. To further constrain the impact of the predicted S yields for massive stars on radial gradients, we adopted a toy model and found that the flattening in the outermost regions requires a decrease of a factor of four in the current S predictions.Conclusions. CCs are solid beacons for tracing the recent chemical enrichment of young stellar populations. Sulfur photospheric abundances, when compared with other α-elements, have the key advantage of being a volatile element. Therefore, stellar S abundances can be directly compared with nebular sulfur abundances in external galaxies.
  •  
8.
  • Howes, Louise, et al. (författare)
  • The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 445:4, s. 4241-4246
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilizes SkyMapper photometry to pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72 <= [Fe/H] <= -2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [alpha/Fe] ratios.
  •  
9.
  • Martell, S., et al. (författare)
  • The GALAH survey : Scientific motivation
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 449:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
  •  
10.
  • Hourihane, A., et al. (författare)
  • The Gaia-ESO Survey : Homogenisation of stellar parameters and elemental abundances
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO Survey is a public spectroscopic survey that targeted greater than or similar to 10(5) stars covering all major components of the Milky Way from the end of 2011 to 2018, delivering its final public release in May 2022. Unlike other spectroscopic surveys, Gaia-ESO is the only survey that observed stars across all spectral types with dedicated, specialised analyses: from O (T-eff similar to 30 000-52 000 K) all the way to K-M (greater than or similar to 3500 K). The physics throughout these stellar regimes varies significantly, which has previously prohibited any detailed comparisons between stars of significantly different types. In the final data release (internal data release 6) of the Gaia-ESO Survey, we provide the final database containing a large number of products, such as radial velocities, stellar parameters and elemental abundances, rotational velocity, and also, for example, activity and accretion indicators in young stars and membership probability in star clusters for more than 114 000 stars. The spectral analysis is coordinated by a number of working groups (WGs) within the survey, each specialised in one or more of the various stellar samples. Common targets are analysed across WGs to allow for comparisons (and calibrations) amongst instrumental setups and spectral types. Here we describe the procedures employed to ensure all survey results are placed on a common scale in order to arrive at a single set of recommended results for use by all survey collaborators. We also present some general quality and consistency checks performed on the entirety of the survey results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy