SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berger Andrea) "

Sökning: WFRF:(Berger Andrea)

  • Resultat 1-10 av 17
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP PUBLISHING LTD. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs, can be functionalized and we summarize emerging approaches to covalently and noncovalently functionalize MoS2 both in the liquid and on substrate. Section IX describes some of the most popular characterization techniques, ranging from optical detection to the measurement of the electronic structure. Microscopies play an important role, although macroscopic techniques are also used for the measurement of the properties of these materials and their devices. Raman spectroscopy is paramount for GRMs, while PL is more adequate for non-graphene LMs (see section IX.2). Liquid based methods result in flakes with different thicknesses and dimensions. The qualification of size and thickness can be achieved using imaging techniques, like scanning probe microscopy (SPM) or transmission electron microscopy (TEM) or spectroscopic techniques. Optical microscopy enables the detection of flakes on suitable surfaces as well as the measurement of optical properties. Characterization of exfoliated materials is essential to improve the GRM metrology for applications and quality control. For grown GRMs, SPM can be used to probe morphological properties, as well as to study growth mechanisms and quality of transfer. More generally, SPM combined with smart measurement protocols in various modes allows one to get obtain information on mechanical properties, surface potential, work functions, electrical properties, or effectiveness of functionalization. Some of the techniques described are suitable for 'in situ' characterization, and can be hosted within the growth chambers. If the diagnosis is made 'ex situ', consideration should be given to the preparation of the samples to avoid contamination. Occasionally cleaning methods have to be used prior to measurement.
  •  
2.
  • Furukawa, Toshi A., et al. (författare)
  • Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression : a systematic review and component network meta-analysis using individual data
  • 2021
  • Ingår i: Lancet psychiatry. - London, United Kingdom : Elsevier. - 2215-0374 .- 2215-0366. ; 8:6, s. 500-511
  • Forskningsöversikt (refereegranskat)abstract
    • Findings We identified 76 RCTs, including 48 trials contributing individual participant data (11 704 participants) and 28 trials with aggregate data (6474 participants). The participants' weighted mean age was 42.0 years and 12 406 (71%) of 17 521 reported were women. There was suggestive evidence that behavioural activation might be beneficial (iMD -1.83 [95% credible interval (CrI) -2.90 to -0.80]) and that relaxation might be harmful (1.20 [95% CrI 0.17 to 2.27]). Baseline severity emerged as the strongest prognostic factor for endpoint depression. Combining human and automated encouragement reduced dropouts from treatment (incremental odds ratio, 0.32 [95% CrI 0.13 to 0.93]). The risk of bias was low for the randomisation process, missing outcome data, or selection of reported results in most of the included studies, uncertain for deviation from intended interventions, and high for measurement of outcomes. There was moderate to high heterogeneity among the studies and their components. 511
  •  
3.
  • Anderson, Beverley H., et al. (författare)
  • Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus
  • 2012
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 44:3, s. 338-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous gamma H2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the alpha-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-alpha primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
  •  
4.
  • Blanco, Ignacio, et al. (författare)
  • Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 - 1.15, p = 1.9 x 10-4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 - 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.
  •  
5.
  • Blein, Sophie, et al. (författare)
  • An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.
  • 2015
  • Ingår i: Breast Cancer Research. - : BioMed Central (BMC). - 1465-5411 .- 1465-542X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals carrying pathogenic mutations in BRCA1/2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals from different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. Here we test the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
  •  
6.
  • Chigrinova, Ekaterina, et al. (författare)
  • Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome
  • 2013
  • Ingår i: Blood. - 0006-4971 .- 1528-0020. ; 122:15, s. 2673-2682
  • Tidskriftsartikel (refereegranskat)abstract
    • Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). Although RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the preexisting CLL, the mechanisms leading to RS have not been clarified. To better understand the pathogenesis of RS, we analyzed a series of cases including 59 RS, 28 CLL phase of RS, 315 CLL, and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell-cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL phase, being present in approximately one half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. Although RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL phase preceding RS had not a generalized increase in genomic complexity compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions.
  •  
7.
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - : Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
  •  
8.
  •  
9.
  • Livingston, John H, et al. (författare)
  • Leukoencephalopathy with Calcifications and Cysts : A Purely Neurological Disorder Distinct from Coats Plus
  • 2014
  • Ingår i: Neuropediatrics. - 0174-304X .- 1439-1899. ; 45:3, s. 175-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity. Patients and Methods A total of 15 patients with LCC were identified from our database of patients with intracranial calcification. The clinical and radiological features are described. Results The median age (range) at presentation was 10 months (range, 2 days-54 years). Of the 15 patients, 9 presented with epileptic seizures, 5 with motor abnormalities, and 1 with developmental delay. Motor abnormalities developed in 14 patients and cognitive problems in 13 patients. Dense calcification occurred in the basal ganglia, thalami, dentate nucleus, brain stem, deep gyri, deep white matter, and in a pericystic distribution. Diffuse leukoencephalopathy was present in all patients, and it was usually symmetrical involving periventricular, deep, and sometimes subcortical, regions. Cysts developed in the basal ganglia, thalamus, deep white matter, cerebellum, or brain stem. In unaffected areas, normal myelination was present. No patient demonstrated cerebral atrophy. Conclusion LCC shares the neuroradiological features of CP. However, LCC is a purely neurological disorder distinguished genetically by the absence of mutations in CTC1. The molecular cause(s) of LCC has (have) not yet been determined.
  •  
10.
  • Osorio, Ana, et al. (författare)
  • DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7×10-3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8×10-3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
  • [1]2Nästa
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Teixeira, Manuel R (9)
Neuhausen, Susan L (9)
Easton, Douglas F. (9)
Antoniou, Antonis C. (9)
Domchek, Susan M. (9)
Singer, Christian F. (9)
visa fler...
Greene, Mark H. (9)
Mai, Phuong L. (9)
Godwin, Andrew K. (9)
Karlan, Beth Y. (9)
Couch, Fergus J. (9)
Sinilnikova, Olga M. (8)
Rookus, Matti A. (8)
Goldgar, David E. (8)
Nathanson, Katherine ... (8)
Benitez, Javier (7)
Andrulis, Irene L. (7)
Spurdle, Amanda B. (7)
Nevanlinna, Heli (6)
Chenevix-Trench, G (6)
Easton, DF (6)
Schmutzler, Rita K. (6)
Chenevix-Trench, Geo ... (6)
Buys, Saundra S. (6)
Meindl, Alfons (6)
Thomassen, Mads (6)
Antoniou, AC (6)
McGuffog, Lesley (6)
Healey, Sue (6)
Stoppa-Lyonnet, Domi ... (6)
Mazoyer, Sylvie (6)
Lubinski, Jan (6)
Jakubowska, Anna (6)
Niederacher, Dieter (6)
Sutter, Christian (6)
Piedmonte, Marion (6)
Friedman, Eitan (6)
Laitman, Yael (6)
Gerdes, Anne-Marie (6)
Manoukian, Siranoush (6)
Radice, Paolo (6)
Caldes, Trinidad (6)
Hansen, Thomas V. O. (6)
Lazaro, Conxi (6)
Szabo, Csilla I. (6)
Osorio, Ana (6)
Montagna, Marco (6)
Simard, Jacques (6)
Offit, Kenneth (6)
McGuffog, L (6)
visa färre...
Lärosäte
Karolinska Institutet (6)
Uppsala universitet (5)
Lunds universitet (5)
Linköpings universitet (4)
Umeå universitet (3)
Göteborgs universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy