SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berger Andreas) srt2:(2015-2019);conttype:(scientificother)"

Sökning: WFRF:(Berger Andreas) > (2015-2019) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Vera, Jean-Pierre, et al. (författare)
  • Limits of Life and the Habitability of Mars : The ESA Space Experiment BIOMEX on the ISS
  • 2019
  • Ingår i: Astrobiology. - : Mary Ann Liebert. - 1531-1074 .- 1557-8070. ; 19:2, s. 145-157
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
  •  
2.
  • Vrkljan, Darko, et al. (författare)
  • Innovative processing : Final report including guidelines and recommendations for future policy development for innovation in mineral and metallurgical processing
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • ObjectivesThe aim of WP4 “Innovative Processing” is to elaborate how innovations in mineral and metallurgical processing are generated or taken up in different EU Member States and on EU‐level and how this is either facilitated or inhibited by policies and legislation on national or European level. The purpose oft he deliverable 4.3 is to complement the findings of D4.1 and D4.2 by carrying out additional interviews with representatives from different stakeholder groups (academia, industry, NGO’s and policymakers). The topics and questions of the questionnaire addressed the respondents’ perception of national and EU‐ and EU MS level mineral policies, gaps and needs with respect to innovation in mineral‐ and metallurgical processing. Questions for the questionnaire focus on previously identified innovations in mineral processing, metallurgical processing and metal recycling. Based on the input both from previous deliverables and from findings through the additional interviews and innovation cases, an analysis of needs and gaps as well as a SWOT analysis has been conducted. Recommendations for future development of mineral and metallurgical processing sector were evaluated.Main FindingsConclusions and recommendations for future policy development for innovation in mineral and metallurgical processing were developed based on a survey and a SWOT analysis.Most of the mineral policies are addressing the entire mineral value chain. Several statutory provisions are related to mineral and metallurgical processing. National mineral policies are not very much addressing the mineral and metallurgical processing, while recycling is dislocated from mining/mineral legislation.The sentiment amongst policy makers towards the raw materials industry has improved on EU level through a number of strategic policy initiatives (e.g. the Strategic Implementation Plan for Raw materials, the revised EU Industrial Policy Strategy, the Raw Materials Initiative).The use of raw materials from secondary sources has been identified as being an integral part of the life cycle of materials.Innovations in mineral and metallurgical processing are not supported at strategic and economic/investment level. The policy is neutral or inhibiting through long and uncertain permitting procedure, or is indifferent to innovation as to mineral and metallurgical processing.The European knowledge and skills base in mineral and metallurgical processing has diminished during the past 20 years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy