SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergman Richard N.) ;hsvcat:1"

Sökning: WFRF:(Bergman Richard N.) > Naturvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
2.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
3.
  • Scott, Robert A., et al. (författare)
  • Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:9, s. 991-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
  •  
4.
  • Liti, Gianni, et al. (författare)
  • Population genomics of domestic and wild yeasts.
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 458:7236, s. 337-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions, population structure and sexual versus asexual reproduction. Less well understood at the whole genome level are the evolutionary processes acting within populations and species that lead to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to fourfold or more coverage of the genome sequences of over seventy isolates of the baker's yeast S. cerevisiae and its closest relative, Saccharomyces paradoxus. We examine variation in gene content, single nucleotide polymorphisms, nucleotide insertions and deletions, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. S. paradoxus populations are well delineated along geographic boundaries, whereas the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined, geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variations.
  •  
5.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
6.
  • Lind, Lars, et al. (författare)
  • Uppsala Consensus Statement on Environmental Contaminants and the Global Obesity Epidemic
  • 2016
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 124:5, s. A81-A83
  • Tidskriftsartikel (refereegranskat)abstract
    • From the lectures presented at the 2nd International Workshop on Obesity and Environmental Contaminants, which was held in Uppsala, Sweden, on 8–9 October 2015, it became evident that the findings from numerous animal and epidemiological studies are consistent with the hypothesis that environmental contaminants could contribute to the global obesity epidemic. To increase awareness of this important issue among scientists, regulatory agencies, politicians, chemical industry management, and the general public, the authors summarize compelling scientific evidence that supports the hypothesis and discuss actions that could restrict the possible harmful effects of environmental contaminants on obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Lind, Lars (4)
Salomaa, Veikko (3)
Wareham, Nicholas J. (3)
McCarthy, Mark I (3)
Sennblad, Bengt (3)
Langenberg, Claudia (3)
visa fler...
Boehnke, Michael (3)
Hamsten, Anders (3)
Mohlke, Karen L (3)
Scott, Robert A (3)
Ripatti, Samuli (3)
Tuomilehto, Jaakko (3)
Thorleifsson, Gudmar (3)
Stefansson, Kari (3)
Gieger, Christian (3)
de Faire, Ulf (3)
Barroso, Ines (3)
Mahajan, Anubha (3)
Froguel, Philippe (3)
Luan, Jian'an (3)
Gustafsson, Stefan (3)
Gigante, Bruna (3)
Metspalu, Andres (3)
Kong, Augustine (3)
Kovacs, Peter (3)
Loos, Ruth J F (3)
Morris, Andrew D (3)
Dupuis, Josée (3)
Pankow, James S. (3)
Boehm, Bernhard O. (3)
Meigs, James B. (3)
Balkau, Beverley (3)
Prokopenko, Inga (3)
Esko, Tõnu (3)
Edkins, Sarah (3)
Jackson, Anne U. (3)
Strawbridge, Rona J. (3)
Chines, Peter S. (3)
Collins, Francis S. (3)
Grallert, Harald (3)
Mihailov, Evelin (3)
Stumvoll, Michael (3)
Lindgren, Cecilia M. (3)
Morris, Andrew P. (3)
Florez, Jose C. (3)
Liu, Ching-Ti (3)
Chen, Han (3)
Stringham, Heather M (3)
Bergman, Richard N (3)
Robertson, Neil (3)
visa färre...
Lärosäte
Uppsala universitet (5)
Umeå universitet (4)
Karolinska Institutet (4)
Stockholms universitet (3)
Lunds universitet (3)
Göteborgs universitet (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy