SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berne C) ;lar1:(su)"

Sökning: WFRF:(Berne C) > Stockholms universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
2.
  • Troch, Peter A., et al. (författare)
  • The importance of hydraulic groundwater theory in catchment hydrology : The legacy of Wilfried Brutsaert and Jean-Yves Parlange
  • 2013
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 49:9, s. 5099-5116
  • Forskningsöversikt (refereegranskat)abstract
    • Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in catchment hydrology, ranging from drought flow analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies the description of water flow in unconfined riparian and perched aquifers through assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes, resulting in a remarkably accurate and applicable family of results, though often challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq equation can be solved analytically allowing compact representation of soil and geomorphological controls on unconfined aquifer storage and release dynamics. The Boussinesq equation has been extended to account for flow divergence/convergence as well as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has been favorably compared to numerical solutions of the three-dimensional Richards equation, confirming its validity under certain geometric conditions. Analytical solutions of the linearized original and extended Boussinesq equations led to the formulation of similarity indices for baseflow recession analysis, including scaling rules, to predict the moments of baseflow response. Validation of theoretical recession parameters on real-world streamflow data is complicated due to limited measurement accuracy, changing boundary conditions, and the strong coupling between the saturated aquifer with the overlying unsaturated zone. However, recent advances are shown to have mitigated several of these issues. The extended Boussinesq equation has been successfully applied to represent baseflow dynamics in catchment-scale hydrological models, and it is currently considered to represent lateral redistribution of groundwater in land surface schemes applied in global circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves Parlange stimulated a body of research that has led to several fundamental discoveries and practical applications with important contributions in hydrological modeling.
  •  
3.
  • Vignon, É., et al. (författare)
  • Challenging and Improving the Simulation of Mid-Level Mixed-Phase Clouds Over the High-Latitude Southern Ocean
  • 2021
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 126:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate models exhibit major radiative biases over the Southern Ocean owing to a poor representation of mixed-phase clouds. This study uses the remote-sensing dataset from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS) campaign to assess the ability of the Weather Research and Forecasting (WRF) model to reproduce frontal clouds off Antarctica. It focuses on the modeling of thin mid-level supercooled liquid water layers which precipitate ice. The standard version of WRF produces almost fully glaciated clouds and cannot reproduce cloud top turbulence. Our work demonstrates the importance of adapting the ice nucleation parameterization to the pristine austral atmosphere to reproduce the supercooled liquid layers. Once simulated, droplets significantly impact the cloud radiative effect by increasing downwelling longwave fluxes and decreasing downwelling shortwave fluxes at the surface. The net radiative effect is a warming of snow and ice covered surfaces and a cooling of the ocean. Despite improvements in our simulations, the local turbulent circulation related to cloud-top radiative cooling is not properly reproduced, advocating for the need to develop a parameterization for top-down convection to capture the turbulence-microphysics interplay at cloud top. Plain Language Summary Among the major shortcomings of climate models is a poor representation of clouds over the Southern Ocean. Thanks to new measurements from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean campaign that took place aboard the Aurora Australia ice breaker, we can now better assess the ability of models to represent clouds off Antarctica. In particular, we focus here on clouds that are mostly composed of ice crystals but that are topped by a thin layer of so-called supercooled liquid droplets that form at temperatures below zero Celsius. While the standard version of the model produces clouds composed only of ice, we show that by adapting the formulation of ice crystal formation to the very pristine atmospheric conditions peculiar to the Southern Ocean it is possible to successfully reproduce thin layers of supercooled liquid droplets observed in mixed-phase clouds. The latter significantly changes how much sunlight these clouds reflect to space, which is critical to understanding the climate. Compared to ice crystals, liquid droplets tend to reflect more solar energy toward space and at the same time, they enhance the cloud infrared emission toward the surface of the Antarctic ice sheet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy