SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertaina M. E.) "

Sökning: WFRF:(Bertaina M. E.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
3.
  • Aglietta, M, et al. (författare)
  • The cosmic ray primary composition between 10(15) and 10(16) eV from Extensive Air Showers electromagnetic and TeV muon data
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 20:6, s. 641-652
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic ray primary composition in the energy range between 10(15) and 10(16) eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a. s.l., 10(5) m(2) collecting area) and the MACRO underground detector (963 m.a.s.l., 3100 m w.e. of minimum rock overburden, 920 m(2) effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N-c) measured by EAS-TOP and the muon number (N-mu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N-mu - N-e studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Deltay = 0.7 +/- 0.4 at E-0 similar to 4 x 10(15) eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components.. and therefore breaks occurring at lower energies in the spectra of the light nuclei. (C) 2003 Elsevier B.V. All rights reserved.
  •  
4.
  • Aglietta, M, et al. (författare)
  • The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 21:3, s. 223-240
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being E-mu(th) approximate to 1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r > 100 m is directly related to the total primary energy E-0. Proton and helium ("p + He") and proton, helium and CNO ("p + He + CNO") primaries are thus selected at E-0 approximate to 80 TeV, and at E-0 similar or equal to 250 TeV, respectively. Their flux is measured: J(p+He)(80 TeV) = (1.8 +/- 0.4) x 10(-6) m(-1)-s(-1) sr(-1) TeV-1, and J(p+He+CNO)(250 TeV) = (1.1 +/- 0.3) x 10(-7) m(-2)-s(-1) sr(-1) TeV-1, their relative weights being J(p+He)(J(p+He+CNO)) over bar (250 TeV) = 0.78 +/- 0.17. By using the measurements of the proton spectrum obtained from the direct experiments and hadron flux data in the atmosphere, we obtain for the relative weights of the three components at 250 TeV: J(p) : J(He) : J(CNO) = (0.20 +/- 0.08) : (0.58 +/- 0.19) : (0.22 +/- 0.17). This corresponds to the dominance of helium over proton primaries at 100-1000 TeV, and a possible non-negligible contribution from CNO. The lateral distribution of Cherenkov light in Extensive Air Showers (EASs), which is related to the rate of energy deposit of the primary in the atmosphere, is measured for a selected proton and helium primary beam, and good agreement is found when compared with the one calculated with the CORSIKA/QGSJET simulation model. (C) 2004 Elsevier B.V. All rights reserved.
  •  
5.
  • Bisconti, F, et al. (författare)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
6.
  • Miyamoto, H, et al. (författare)
  • Space debris detection and tracking with the techniques of cosmic ray physics
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector. 
  •  
7.
  • Miyamoto, H., et al. (författare)
  • The Euso@turlab : Test of mini-EUSO engineering model
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented. 
  •  
8.
  • Casolino, M, et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
9.
  • Bisconti, F., et al. (författare)
  • Mini-EUSO engineering model : tests in open-sky condition
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth's atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported.
  •  
10.
  • Miyamoto, H., et al. (författare)
  • Space Debris detection and tracking with the techniques of cosmic ray physics
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy